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MULTISCALE REDUCED ORDER MODELING OF 
COMPLEX MULTI-BAY STRUCTURES 

AFOSR Contract FA9550-10-1-0080 
 
 

FINAL REPORT 
 

The focus of this investigation was on achieving quantum improvements in the reduced 
order modeling of structures undergoing large deformations with particular focus on 
those of future hypersonic vehicles. One key feature of the present effort was on spanning 
a much broader ranges of scales than prior investigations (reviewed in [P.1]) had 
achieved, i.e. being able to capture the effects of localized geometrical defects (stress 
“hot spots” at the microscale level) but also to consider macroscale structures which are 
assemblies of panels themselves considered here as the microscale, see Fig. 1. 

 

 
Figure 1. Multiscale structural perspective for hypersonic vehicles. 

 
The above plan was separated into the 4 separate investigations: 

1. The micro-meso upscaling process, i.e. how to account for microscale features in 
nonlinear reduced order models of mesoscale models. 

2. The reduced order modeling of mesoscale structures with “difficult” features such as 
curved structures with snap-through motions and cantilevered ones 

3. The extension of the mesoscale strategies for the construction of monolithic (single 
scale) reduced order models of macroscale structures 

4. The meso-macro upscaling process. 
The work carried out in these 4 directions under this AFOSR grant is highlighted below, 
see the journal and conference papers and attachments for full details. 
 
 



1. MICRO-MESO UPSCALING PROCESS 
The two key questions addressed in this part of the investigations were: 
 (i) can a reduced order model of the displacement field of the structure with defect 

provide an accurate prediction of the stress hot spots induced by localized defects? 
and 

(ii) can a reduced order model of the defect-free mesoscale structure be enriched to 
yield an accurate estimation of the displacement and stress fields of the structure with 
defect(s)? 

The first of the above questions is really on the applicability of the nonlinear reduced 
order modeling strategy to structures with defects while the second seeks an efficient 
methodology to account for either uncertain defects or for evolving defects, such as the 
propagation of a crack (although the plasticity involved at the crack tip cannot be 
accounted for at present). 

This task was addressed on a panel with a notch in [S.1], [C.10], and [T.1] and the 
answer to both of the above questions is a definite yes. The basis of the reduced order 
model does indeed exhibit a notch effect which leads to an accurate representation of not 
only the displacement field but also the stress. Further, two enrichments strategies were 
successfully formulated and validated that rely on the reduced order model of the defect-
free structure to predict the stress field of its counterpart with defect(s). 

 
2. REDUCED ORDER MODELING OF “DIFFICULT” MESO STRUCTURES 

The various extensions of the nonlinear reduced order modeling addressed in tasks 1, 3, 
and 4 will give rise to a broad array of structural geometries and boundary conditions to 
be considered which will stretch the current capabilities and validations of the 
methodology. It was accordingly decided to focus some of the present efforts on 
resolving some of the long standing difficulties encountered in the reduced order 
modeling of shallow curved structures and cantilevered ones. This component of the 
investigation was addressed in [C.3], [C.7], [C.9], and [T.2] and has led to great progress 
in handling these difficult geometries and boundary conditions. In particular: 

(i) it was demonstrated that these difficulties are in fact rooted in differences (the 
definition of elasticity) in the formulation of the finite element technique and in the 
reduced order modeling definition. This important finding casts a new light on how the 
identification of the reduced order model ought to be carried out in these “difficult” 
conditions. 

(ii) based on the finding of (i), a novel identification technique was devised to capture 
the snap-through boundary and response of shallow curved structures that uses pre- and 
post-snap through configurations. This approach was successfully validated on a curved 
beam and a thin cylindrical shell. 

(iii) the reduced order modeling of cantilevered structures was also improved 
significantly leading to a successful implementation onto as complex models as the wing 
of the Predator UAV. 

 
3. MONOLITHIC REDUCED ORDER MODELING OF MACRO STRUCTURES 

Discussing the strength and weaknesses of meso-macro upscaling procedures (see 
section 4 below) is best carried out in comparison with a monolithic, i.e. single scale, 
model of the same structure. To this end, a complex 9-bay panel was considered and its 



nonlinear reduced order model investigated. This process was not only successful, see 
[S.2], [C.1], [C.5], and [T.1], but also led to significant improvements in the formulation: 
both a deepening of the dual mode basis and the formulation of a much more expedient 
identification technique of the coefficients. These findings not only extend the domain of 
applications of monolithic reduced order models but of also of their multi-scale 
counterparts. 

 
4. MESO-MACRO UPSCALING PROCESS 

The last component of the investigation focused on the upscaling, and more globally 
the transfer of information, between meso and macro scales using nonlinear reduced 
order models. This issue was first addressed in a component mode synthesis-type 
approach in which reduced order models of meso components are constructed and 
assembled to form the macro structure in a bottom-up strategy. This effort is detailed in 
Chapter 4.5 of [T.1] where it is demonstrated that this approach will in general not result 
in a smaller or simpler reduced order model. 

This finding is in fact not unexpected given the optimality of the basis used in 
constructing the reduced order model. Thus, a simplification of the modeling in an 
upscaling process will require an approximation of the displacement field as discussed in 
other multi-scale mechanics problems. To achieve this approximation, a top-down 
approach was suggested in [T.1] in which a “coarse” monolithic reduced order model of 
the entire structure (as performed in section 3) is enriched on one or a few meso scale 
components (those of particular interest) to provide an accurate representation of their 
response. Note that the coarseness of the overall macro model will invariably induce 
epistemic uncertainty on the prediction of the meso components. Thus, a successful top-
down meso-macro multiscaling must be accomplished in an uncertain setting. 

The construction of uncertain nonlinear reduced order model was then emphasized to 
complete the top-down multiscaling strategy. This effort has been very successful as 
demonstrated in [P.2], [P.3], [C.2], [C.4], [C.6], [C.8], and [C.11]. The assembly of these 
various pieces and its implementation on the 9-bay structure discussed in the bottom-up 
strategy and in section 3 is currently being finalized. 
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ABSTRACT 

This paper focuses on the development of nonlinear reduced order modeling techniques for the 

prediction of the response of complex structures exhibiting “large” deformations, i.e. a 

geometrically nonlinear behavior, and modeled within a commercial finite element code. The 

present investigation builds on a general methodology successfully validated in recent years on 

simpler beam and plate structures by: 

(i) developing a novel identification strategy of the reduced order model parameters that 

enables the consideration of the large number of modes (> 50 say) that would be needed for 

complex structures, and 

(ii) extending an automatic strategy for the selection of the basis functions used to represent 

accurately the displacement field. 

The above novel developments are successfully validated on the nonlinear static response of a 

9-bay panel structure modeled with 96,000 degrees of freedom within Nastran. 

 

Keywords: reduced order modeling, nonlinear geometric response, finite elements 
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INTRODUCTION 

Significant efforts have centered in the last decade or so on the construction of reduced order 

models (ROMs) of structures undergoing “large” deformations, i.e. exhibiting geometric 

nonlinearity, from finite element models generated using commercial codes (e.g. Nastran, 

Abaqus, DYNA3D), see [1] for a recent review. 

The use of commercial finite element codes enables the straightforward consideration of 

complex models, allows a broad ensemble of possible element types and capabilities, but also 

permits a direct transition to the industrial setting where these codes are routinely used. The 

counterpart of these advantages is the unavailability of certain information and the uncertainty on 

the formulation implemented in the finite element modeling and response computation. 

Notwithstanding the above difficulties, the ROM capabilities have progressed from 

applications to flat structures (see [2-9]), to moderately large motions of curved structures (see 

[10-14]), and a first assessment on a notched panel [15]. Further, the coupling of these nonlinear 

structural reduced order models with aerodynamics, either full or reduced order model has also 

been successfully demonstrated in [16-18]. A similar coupling but of the structural dynamics and 

thermal aspects, the two in reduced order model format, has also been proposed and validated in 

[19-21]. Finally, the introduction of uncertainty in the reduced order model has finally been 

formulated and implemented [22,23].   

The reduced order models developed in the above investigations are parametric, i.e. the form 

of the equations governing the generalized coordinates is fixed, linear in mass and damping 

operators with a stiffness operator exhibiting linear, quadratic, and cubic terms in all 

combinations of generalized coordinates as derived from finite deformation elasticity in the 
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reference configuration (see review below). Then, the key challenges in the construction of such 

a reduced order model are: 

(i) the estimation of these parameters of the model from a set of finite element results. Current 

methods for this identification are based on computed static responses for specified loads [3,6], 

or in reverse, necessary loads to achieve a particular displacement (see [8,24]). This strategy 

becomes computationally expensive as the size of the model increases as it is proportional to the 

third power of the number of modes retained. 

(ii) the selection of the basis to represent well and “economically” (with a small basis) the 

displacements. 

These challenges have been well addressed for the simple structures reviewed above and with a 

small number of modes, typically less than 20. However, for more complex structural models, 

i.e. those which exhibit more complex physical behavior and thus necessitate a larger number of 

modes for an accurate representation of their response, e.g. the 9-bay panel of [25], a revisit of 

the identification approach and basis selection strategy were found necessary [25]. This revisit is 

the focus of the present investigation and both a new identification approach and a deepened 

validation of the dual mode basis selection strategy of [8] will be presented.  

The application of these novel approaches is demonstrated for the construction of a reduced 

order model of the 9-bay panel modeled within Nastran with 96,000 degrees of freedom. An 

excellent agreement between the nonlinear static responses obtained by Nastran and by the 

obtained 85-mode nonlinear reduced order model is achieved. 
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REDUCED ORDER MODEL FORM AND GOVERNING EQUATIONS 

The reduced order models considered in this investigation are based on a representation of the 

nonlinear geometric response of the structure in the form 

                                    ( ) ( )∑
=

ψ=
M

n

n
n tqtu

1

)(                                                        (1) 

where ( )tu  denotes the vector of displacements of the finite element degrees of freedom. Further, 

)(nψ  are specified, constant basis functions and ( )tqn  are the time dependent generalized 

coordinates.  

The derivation of the governing equations for these coordinates is achieved here from the 

equations of finite deformation elasticity in the undeformed configuration 0Ω . Specifically, the 

equations of motion for an infinitesimal element are (summation is implied over repeated 

indices) 

                                                   ( ) iijkij
k

ubSF
X

0
0

0 ρ=ρ+
∂
∂                                          (2) 

where S  is the second Piola-Kirchhoff stress tensor (double underline is used here for matrices), 

0ρ  denotes the density in the reference configuration, and 0b  is the vector of body forces, all of 

which are assumed to depend on the position 0Ω∈X , [26,27]. In Eq. (2), F  denotes the 

deformation gradient tensor of components 

                                                               
j

i
ij

j

i
ij X

u
X
x

F
∂
∂

+δ=
∂
∂

=                                                  (3) 
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where ijδ  is the Kronecker delta and Xxu −=  is the displacement vector, x being the position 

vector in the deformed configuration. The material is assumed here to be linear elastic in that S  

and E  (the Green strain tensor) satisfy 

                                            klijklij ECS =                                                              (4) 

where C  is a fourth order elasticity tensor, function in general of the undeformed coordinates X

. 

    In parallel to its discrete counterpart in Eq. (1), the displacement field iu  in the continuous 

structure is sought in the modal-like representation 

                                                         ( ) ( ) ( )∑
=

=
M

n

n
ini XUtqtXu

1

)(,          i = 1,2,3                         (5) 

where ( )XU n
i

)(  are specified, constant basis functions satisfying the boundary conditions also in 

the undeformed configuration.   

A set of nonlinear ordinary differential equations governing the evolution of the generalized 

coordinates ( )tqn  can then be obtained by introducing Eq. (5) in Eqs (2)-(4) and imposing 

(Galerkin approach) the error to be orthogonal to the basis. This process leads [8] to the requisite 

reduced order model equations 

                                       ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1( .             (6) 

Note in Eq. (6) that a linear damping term jij qD   has been added to collectively represent 

various dissipation mechanisms. Further, ijM  denotes the elements of the mass matrix, )1(
ijK , 
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)2(
ijlK , )3(

ijlpK  are the linear, quadratic, and cubic stiffness coefficients and iF  are the modal 

forces. 

    The knowledge of the displacements provides a complete solution of the problem and other 

quantities can then be evaluated. For example, any component of the second Piola-Kirchhoff 

stress tensor at any point can be expressed as 

                                                      nm
nm

ijm
m

ijijij qqSqSSS ),()( ~ˆ ++=                                         (7) 

where the coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  depend only on the point X considered. 

 

ROM PARAMETERS IDENTIFICATION 

The estimation of the parameters of Eq. (6) is an important step of the reduced order model 

construction. First, the mass components ijM  and modal forces iF  can be identified as in linear 

modal models, i.e.  

                                          
)()( j

FE
Ti

ij MM ψψ=
       

 ( )tFF Ti
i

)(ψ=                          (8a), (8b) 

where FEM  is the finite element mass matrix and F(t) is the excitation vector on the structure. 

Next is the determination of the stiffness coefficients )1(
ijK , )2(

ijlK , and )3(
ijlpK . In this regard, 

note first that the linear coefficients )1(
ijK  could be determined as in linear modal models, i.e. 

                                                          
)()1()()1( j

FE
Ti

ij KK ψψ=
                                                      

(9) 

where )1(
FEK  is the finite element linear stiffness matrix. 

Another approach must however be adopted for )2(
ijlK  and )3(

ijlpK  as nonlinear stiffness matrices 

are typically not available from a commercial finite element code. Formal expressions, as 
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integrals over the undeformed domain of the structure, for the linear, quadratic, and cubic 

stiffness coefficients were obtained [8] in the process of deriving Eq. (6). They have been used to 

estimate the coefficients (see [23]) through a discretization of the domain consistent with the 

finite element model. Non-intrusive (or indirect) methods (see [1] for review) have also been 

developed to identify these coefficients based on computed static responses and it is this latter 

strategy which is considered here. 

In this regard, a reduction in this computational effort is obtained by noting the symmetrical 

role of j and l in the quadratic terms and j, l, and p in the cubic ones, which indicates that the 

summations over those indices can be restricted to p ≥ l ≥ j leading to approximately 6/4M  

coefficients to be identified. 

Two approaches have been proposed to identify the above quadratic and cubic stiffness 

parameters (and potentially the linear ones as well) from a series of static finite element 

solutions. The first one relies on prescribing a series of load cases and projecting the induced 

responses on the basis functions )(nψ  to obtain the corresponding generalized coordinates values 

)( p
jq , p being the index of the load cases (see [3,6]). Then, introducing these values into Eq. (6) 

for each load case yields 

                        
)()()()()3()()()2()()1(   p

i
p

r
p

l
p

jijlr
p

l
p

jijl
p

jij FqqqKqqKqK =++ ,  i = 1, ..., M               (9) 

where M denotes the number of basis functions (or modes) in the reduced order model. 

Proceeding similarly for P load cases yields a set of linear algebraic equations for the coefficients 

)2(
ijlK  and )3(

ijlpK , and possibly the linear stiffness coefficients )1(
ijK  as well, which can be solved 

in a least squares format to complete the identification of the stiffness parameters. 
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An alternate strategy has also been proposed (e.g. see [24] and the modification of [8]) in 

which the displacements are prescribed and the required force distributions are obtained from the 

finite element code. The corresponding modal forces are then evaluated from Eq. (8b) and a set 

of equations of the form of Eq. (9) is again obtained. Appropriately selecting the displacement 

fields to be imposed can lead to a particularly convenient identification of the stiffness 

coefficients. Specifically, the imposition of displacements proportional to the basis function 

)(nψ  only, i.e. 

                                       )(n
nqu ψ=           )(ˆˆ n

nqu ψ=              )(~~ n
nqu ψ=                          (10) 

leads to the 3 sets of equations 

                            ininnnninnnin FqKqKqK =++ 3)3(2)2()1(  (no sum on n) 

                            ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1( =++  (no sum on n)                                      (11) 

                            ininnnninnnin FqKqKqK ~~~~ 3)3(2)2()1( =++  (no sum on n)     

in which no sum over the index n is to be understood and for i = 1, ..., M. In fact, these 3 sets of 

equations permit the direct evaluation of the coefficients )1(
inK , )2(

innK , and )3(
innnK  for all i. 

Repeating this effort for  n = 1, ..., M  thus yields a first set of stiffness coefficients. 

Proceeding similarly but with combinations of two basis functions, i.e. 

                                                       
)()( m

m
n

n qqu ψ+ψ=    m ≥ n                                          (12) 

and relying on the availability of the coefficients )1(
inK , )2(

innK , )3(
innnK  and )1(

imK , )2(
immK , )3(

immmK  

determined above, leads to equations involving the three coefficients )2(
inmK , )3(

innmK , and )3(
inmmK . 
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Thus, imposing three sets of displacements of the form of Eq. (12) provides the equations needed 

to also identify )2(
inmK , )3(

innmK , and )3(
inmmK . 

Finally, imposing displacement fields as linear combinations of three modes, i.e. 

                                            
)()()( r

r
m

m
n

n qqqu ψ+ψ+ψ=    r ≥ m ≥ n                             (13) 

permits the identification of the last coefficients, i.e. )3(
inmrK . 

Proceeding either with load cases, i.e. Eq. (9), or with imposed displacement solutions, Eqs. 

(10)-(13), M coefficients (1 for each value of i) can be evaluated for each load/displacement 

solution. Accordingly, there will be approximately 6/3M  such solutions to be determined, each 

one of which requires a full finite element nonlinear analysis. For an M = 60 basis function 

reduced order model, there will thus be 36,000 solutions which represents a very significant 

upfront computational effort. 

An alternate approach is proposed here, which relies on the availability of the final tangent 

stiffness matrix for each load/imposed displacement case. The advantage of this approach is that 

an M × M matrix is obtained for each solution and thus a reduction of the computational effort to 

( )2MO  is expected. The specific details of this novel algorithm are developed below. 

The iu component of the reduced order tangent stiffness matrix is derived from the cubic 

stiffness operator of Eq. (6) as 

                               
[ ]
[ ] [ ] ljiujlijulijlujiujijuiu

pljijlpljijljij
u

T
iu

qqKKKqKKK

qqqKqqKqK
q

K

)3()3()3()2()2()1(

)3()2()1()(

 +++++=

++
∂
∂

=
                   (14) 
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It is proposed here to determine the stiffness coefficients  )1(
ijK , )2(

ijlK , and )3(
ijlpK  by imposing the 

matching, for a series of deformed configurations, of the reduced order tangent stiffness matrix 

with the projection on the basis of its finite element counterpart )(ˆ TK . That is,  

                                 ( ) ( ) ΨΨ= )(ˆ)( )()( pTTpT uKqK  where   ( ) ( )pp qu Ψ=                             (15) 

for a series of p = 1, ..., P deformed configurations. In the above equations, the subscript T  

denotes the operation of matrix transposition and Ψ is the modal matrix 

                                                             [ ])()2()1( Mψψψ=Ψ 2 .                                             (16) 

The deformed configurations ( ) ( )pp qu Ψ=  selected here are those of the imposed 

displacement scheme, Eqs. (10)-(12). Consider first the situation in which the imposed 

displacement is along a single basis function, i.e. )( j
jqu ψ= . The corresponding ROM tangent 

stiffness matrix can then be written as (no sum on j) 

                                 
[ ] [ ] 2)3()3()3()2()2()1()(

jiujjijujijjujiujijuiu
T

iu qKKKqKKKK +++++=
                     

(17) 

Since the elements )2(
ijlK  and )3(

ijlpK  were assumed to be zero unless p ≥ l ≥ j, the above equation 

is equivalent to 

     
[ ] 2)3()2()1()()( ˆ jijjujijuiuiu

TTT
iu qKqKKKK ++=ΨΨ=

        
  j < u             (18) 

     [ ] 2)3()2()1()()( 32ˆ uiuuuuiuuiuiu
TTT

iu qKqKKKK ++=ΨΨ=     j = u            (19) 

     [ ] 2)3()2()1()()( ˆ jiujjjiujiuiu
TTT

iu qKqKKKK ++=ΨΨ=
           

j > u             (20) 



11 

from which the coefficients )2(
ijlK , )3(

ijjlK , and )3(
ijllK  can be estimated if it is assumed that the 

linear stiffness coefficients are obtained from Eq. (9). 

To complete the identification of the reduced order model, it remains to evaluate the 

coefficients )3(
ijluK  for j≠l, j≠u, and u≠l. They can be evaluated from the knowledge of )(T

iuK  

corresponding to a displacement field which involves both basis functions j and l, i.e. of the form 

of Eq. (12). Then, )(T
iuK  is given by Eq. (14) in which no summation on j and l applies. 

Specifically, for u > l > j, one has 

     
[ ] [ ] [ ]2)3(2)3()3()2()2()1()()(  ˆ

lillujijjuljijlulilujijuiuiu
TTT

iu qKqKqqKqKqKKKK +++++=ΨΨ=
    

(21) 

in which all terms are known except )3(
ijluK . 

Note in the above procedure that no combination of three modes, as in Eq. (13), is necessary 

and thus, as suggested at the beginning of this section, the number of deformed configurations to 

consider is only of order ( )2MO , it is indeed ( ) 2/12 −+ MMM . To corroborate this analysis, 

shown in Table 1 are the number of static solutions required for the new, tangent stiffness-based 

identification scheme and the imposed displacement force-based method. These results clearly 

show the reduction in computational effort necessary which converges to M/3 for large M. 

However, the CPU time required in the construction of the tangent stiffness matrix and its 

transformation to the modal tangent stiffness matrix ought to be taken into account to perform a 

fair comparison. For the 9-bay panel considered in the ensuing sections and with 96,000 degrees 

of freedom, the CPU time required to produce a static solution with tangent stiffness matrix was 

found to be approximately 1.5 times the time to obtain the same solution without computing the 

tangent stiffness matrix. The combination of these factors suggests that the net reduction in 
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computational time implied by the tangent stiffness algorithm is a factor of the order of M/4 to 

M/5 for large M. 

A limited set of comparisons were performed, on the 9-bay panel described below and on a flat 

clamped-clamped beam, to assess whether the stiffness coefficients identified by the imposed 

displacement methods based on the forces and the tangent stiffness matrix were noticeably 

different and/or they led to reduced order model with different predictive capabilities. While 

some, typically small, differences in the coefficients were found, the two methods led to reduced 

order model predictions that were very close to each other suggesting that the methods provide 

an equal accuracy in estimating the stiffness coefficients. 

 

ROM BASIS SELECTION 

The selection of the basis functions )(nψ  represents a key challenge of the reduced order 

modeling strategy: if the structural response is not well represented within this basis, the 

corresponding prediction of the reduced order model will in general be poor. The modes/basis 

functions needed for a nonlinear problem are certainly expected to include those used for the 

corresponding linear problem, but others are also anticipated to model the difference in physical 

behavior induced by the nonlinearity. This situation is particularly clear in shell-like structures 

subjected to transverse loadings in which the linear response is predominantly transverse while 

the tangential/in-plane displacement field plays a fundamental role (the “membrane-stretching” 

effect, see [1,3,6] for discussion) in large motions. 

This issue was addressed in [8] through the inclusion in the basis of an additional set of basis 

functions referred to as dual modes aimed at capturing the membrane stretching effects. The key 

idea in this approach is to first subject the structure to a series of “representative” static loadings, 
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and determine the corresponding nonlinear displacement fields. Then, extract from them 

additional basis functions, the “dual modes”, to append to the linear basis, i.e. the modes that 

would be used in the linear case. It was argued in [8] that the representative static loadings 

should be selected to excite primarily the linear basis modes and, in fact, in the absence of 

geometric nonlinearity (i.e. for a linear analysis) should only excite these modes. i.e. the applied 

load vectors )(m
FEF  on the structural finite element model should be such that the corresponding 

linear static responses are of the form  

                                                                 ∑ ψα=
i

im
i

mu )()()(                                                  (22) 

which occurs when 

                                                             ∑ ψα=
i

i
FE

(m)
i

m
FE KF )()1()(                                           (23) 

where )(m
iα  are coefficients to be chosen with m denoting the load case number. A detailed 

discussion of the linear combinations to be used is presented in [8] but, in all validations carried 

out, it has been sufficient to consider the cases 

                                                  )()1()( i
FE

(m)
i

m
FE KF ψα=     i = dominant mode                       (24) 

and 

                                          [ ])()()1()(
2

ji
FE

(m)
im

FE KF ψ+ψ
α

=     i =dominant mode, ij ≠              (25) 

where a “dominant” mode is loosely defined as one expected to provide a large component of the 

panel response to the physical loading. The ensemble of loading cases considered is formed by 

selecting several values of )(m
iα  for each dominant mode in Eq. (24) and also for each mode 

ij ≠  in Eq. (25). Note further that both positive and negative values of )(m
iα  are suggested and 
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that their magnitudes should be such that the corresponding displacement fields )(mu  range from 

near linear cases to some exhibiting a strong nonlinearity. 

The next step of the basis construction is the extraction of the nonlinear effects in the obtained 

displacement fields, which is achieved by removing from the displacements fields their 

projections on the linear basis. Finally, a proper orthogonal decomposition (POD) analysis of 

each set of “nonlinear responses” is then sequentially carried out to extract the dominant features 

of these responses which are then selected as dual modes, see [8] for full details. 

Validating the appropriateness of these dual modes can be done in particular by demonstrating 

notable improvements in the projection of snap-shots of the full response on a basis that includes 

them vs. one that does not, see ensuing section for details. A more visual approach would be to 

demonstrate that the deflections induced by the loadings of Eq. (24) and (25) are similar to those 

obtained with the physical loading of interest for a broad range of overall magnitude. This effort 

could be done by plotting the corresponding displacement fields and comparing them. A more 

expedient strategy would be to visualize these displacement fields in the N-dimensional space, 

where N is the number of degrees of freedom of the structure, and to show that the displacements 

induced by the physical loading and by the ones of Eq. (24) and (25) closely occupy the same 

part of the space. Since N is typically much larger than 3, this space cannot be represented 

graphically but 2- and 3-dimensional sections of it can be very informative. 

To exemplify this situation, consider the clamped-clamped aluminum beam of [19] subjected to 

both static and dynamic uniform loads. In the absence of symmetry breaking, the transverse 

displacements are symmetric while the inplane ones are antisymmetric. Three representative 

descriptors of the displacement field are thus the transverse displacements of the beam middle 

and of another point, taken here as the 1/4 point, and the inplane displacement of that same off-
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center point. The magnitude of these displacements is plotted vs. each other in Fig. 1 for a series 

of loadings. First are a uniform static load of varying magnitude, loads of the form of Eq. (24) 

using the first symmetric mode (1-1 Dual) and the second symmetric mode (2-2 Dual), and 

finally loads in the form of Eq. (25) with combinations between the first symmetric mode and the 

two following ones (1-2 Dual and 1-3 Dual). Also included in Fig. 1 are snap shots of the 

dynamic stationary response to a uniformly distributed load varying randomly in time as a white 

noise bandlimited process in the frequency range [0,1042Hz] simulating an acoustic loading of 

overall sound pressure level (OASPL) of 143dB. 

It is clearly seen from Fig. 1 that the displacements induced by the loadings of Eq. (24) for the 

1-1 Dual and Eq. (25) closely occupy the same space as both static and dynamic physical loads 

and thus they can efficiently be used in the construction of the basis for the representation of the 

full nonlinear response. Note as well that the displacements induced by the loading of Eq. (24) 

for the 2-2 Dual does not occupy the same space as the other ones and thus is not a good 

candidate for the basis, i.e. its inclusion in the basis would not be detrimental but would not be 

very beneficial either. This observation was indeed expected as mode 2 is not a dominant mode, 

i.e. it does not or rarely does (in the dynamic case) represent the largest component of the 

response. This finding confirms the selection strategy of the modes, dominant or not, in Eq. (24) 

and (25). The appropriateness of the above duals extends well beyond the uniform loads, static or 

dynamic, discussed above; they are appropriate for the class of loading conditions in which the 

response is dominated by mode 1 (the mode selected as dominant). To confirm this expectation, 

the displacements induced by triangular loads (zero at the clamp supports and maximum at the 

beam middle) are also plotted in Fig. 1 and they also closely occupy the same space.  



16 

  The above dual mode construction has been very successfully applied to various beams and 

plates structural models, e.g. see [8,9,14-21], to capture the nonlinear interaction, both static and 

dynamic, between transverse and “in-plane” motions. 

 

VALIDATION MODEL DESCRIPTION 

The 9-bay fuselage sidewall panel of [25] modeled within Nastran was considered for the 

validation of the (i) basis selection strategy and (ii) novel stiffness coefficients identification. The 

9-bay panel is a section of the sidewall fuselage panel studied in [28], see Fig. 2 for a picture of 

the actual hardware taken from [28]. The finite element model of the 9-bay panel, shown in Fig. 

3, has 96,000 degrees of freedom. The dimensions of the skin panel are 58.11in by 25.06in, and 

it is subdivided into nine bays by a riveted frame and longeron substructure. Each bay measures 

18.75in by 7.5in between rivet lines. The thickness of the skin panel and frame substructure is of 

0.05in and 0.04in for the longeron substructure. The finite element model consists of 4-node 

plate elements. Further, beam elements were used to model the rivets that join the skin panel to 

the frame and longeron substructures. The material properties are shown in Table 2. The edges of 

the skin panel are simply supported.  

 

REDUCED ORDER MODEL OF THE 9-BAY PANEL 

One of the complexities of the 9-bay panel considered here is in its high modal density, the 

structure has 89 linear modes in the [0,500]Hz frequency band. This presents a challenge in the 

construction of a compact basis; therefore, it becomes very important to identify the most 

important modes that are needed to represent the response of the structure. 
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To support this selection process, a small database of nonlinear static and dynamic responses 

was constructed. It includes the static responses to 10 different uniform pressures applied to the 

skin panel and of magnitudes ranging from 0.015 psi to 0.6 psi. The corresponding peak 

transverse deflections varied from 0.1 skin panel thicknesses to 2.5 thicknesses. Further, also 

considered was a short time history of the dynamic response of the panel to an acoustic 

excitation modeled as a uniform pressure applied only on the skin panel and varying in time as a 

white noise in the frequency range [0,500]Hz. The overall sound pressure level (OASPL) was 

144dB and a series of 200 “snapshots” were obtained from the stationary part of the 

MSC/Nastran SOL 400 nonlinear dynamic response.  

The appropriateness of a basis to model the response can be assessed by the representation 

error  

                                                            
u

uu proj
rep

−
=e                                                            (27) 

where u is the static displacement field computed by the finite element code and proju  is its 

projection on the selected basis. The representation error repe  was plotted as a function of the 

number of retained linear modes and the modes at which noticeable drops in this error occurred 

were recorded. This process led to the identification of a set of 49 linear modes, with natural 

frequencies ranging from 68Hz to 541Hz. The mean of the representation error of the dominant 

transverse displacement (T3 or z component) was equal to 0.43% for the skin panel and 0.5% for 

the frame-longeron substructure. Further, the mean representation errors for the in-plane 

component along the length of the skin panel (T1 or x component) were equal to 56% for the 

skin panel and 1.1% for the frame-longeron substructure. The mean representation errors for the 

component along the width (T2 or y component), which is the dominant “in-plane” component 
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for the skin panel, were equal to 71% for the skin panel and 5.1% for the frame-longeron 

substructure. The large errors of the in-plane components of the skin panel are fully expected and 

result from the membrane stretching that occurs when the behavior of the panel is in the 

nonlinear regime, and which the linear basis cannot capture.  

The 14 linear modes with the largest modal components, i.e. modes 1, 5, 6, 7, 9, 10, 13, 15, 16, 

25, 26, 28, 46 and 50, were used to construct the dual modes. Since the modal component of 

mode 1 is much larger than the other ones, it was considered as the only dominant mode in Eqs. 

(24)-(25). The POD-based dual mode construction procedure highlighted above (see [8] for full 

details) was performed for the data obtained for mode 1 alone and each of the 13 combinations 

of mode 1 and another of the 13 largest responding modes. In each of these 14 situations, 10 

different loading factors )(m
iα were used, half positive and half negative, and leading to peak 

deflections ranging from 1 to approximately 2.4 skin panel thicknesses. The remainders of these 

140 deflections, after projection on the 49 linear modes identified above, were analyzed by POD. 

A key aspect of this approach is to select the POD modes that contain new information 

originating from the geometric nonlinearity. In this light, there are two main substructures of 

interest, the skin panel and the frames. For the skin panel, it is of interest to select the POD 

eigenvectors with largest eigenvalues and having a dominant in-plane component (T1 and T2). 

On the other hand, it can be seen from Fig. 3(a) that the frames are analogous to a cantilevered 

structure. Therefore, it is of interest to select the POD eigenvectors with largest eigenvalues and 

having dominant T3 components, which is in the tangential or axial direction of the frames. 

Thirty-six duals modes were identified this way leading to a 85-mode model. 

 Another perspective on the adequacy of the dual modes is provided by the 3-dimensional 

section of the N-dimensional space of displacements shown in Fig. 4 which focuses on the 
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transverse displacements at the middle points of the center panel and of the corner and side 

panels (panels 1 and two, see Fig. 3b) and the T2 displacement at these latter points. Clearly, the 

duals shown closely occupy the same space as the physical uniform loading, as seen in 

connection with the beam model, see Fig. 1. 

 

9-BAY PANEL STATIC VALIDATION  

Having completed the reduced order model construction, it was desired to assess its predictive 

capability in comparison with Nastran. To this end, a loading of 0.6 psi, leading to a 2.5 

thicknesses maximum skin panel deflection, was considered and shown in Figs. 5-12 are contour 

plots of the different displacement components. Note the excellent matching, both qualitatively 

and quantitatively, between reduced order model and NX/Nastran results. The norm errors of the 

former in comparison to the latter, for the skin panel degrees-of-freedom, were 1.1% for the 

transverse (T3) component, 3.5% for the in-plane T2 component, 45% for the other, much 

smaller, in-plane component T1, and 5% for the in-plane magnitude (see also Table 3). Clearly, 

the matching of the dominant components, T3 and T2, is very good. On the other hand, the 

relative error of the T1 component is still rather large but it is clear from Figs. 7-12 that this 

component is much smaller than its T2 counterpart (as stated above).  

The prediction errors for the frame substructure were equal to 1.3% for T3, 13% for T1, 8% for 

T2, and 12% for the magnitude of the in-plane displacements. 

A peak displacement of 2.5 thicknesses is usually considered to be well within the nonlinear 

range for a clamped-clamped panel. To confirm this assessment, a linear Nastran analysis was 

carried out for the same loading condition and shown in Fig. 13 are the resulting T3, T2, and T1 

components of the skin panel displacements. Note the dramatic difference in the T2 
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displacements between linear and nonlinear analyses (Figs 7 and 13b). Fewer differences in the 

shape of the T3 components are observed, but the peak magnitude is notably reduced in the 

nonlinear case, 2.5 thicknesses as compared to 5 thicknesses in the linear case, as expected. 

 

9-BAY PANEL NONLINEAR DYNAMIC VALIDATION 

The 9-bay panel was subjected to a uniform pressure on its top surface varying randomly in 

time as a white noise band-limited process in the frequency range [0,500]Hz to simulate an 

acoustic loading.  The acoustic excitation consisted of an overall sound pressure level (OASPL) 

of 144dB. Further, to permit a close comparison between the full finite element and ROM 

results, a simple Rayleigh damping model was adopted, i.e. for which the damping matrix is 

KMD β+α= with α=7.55/s and β=5.6E-6s. This selection led to damping ratios between 0.65% 

and 1% for all transverse modes in the excitation band. The excitation level considered led to a 

peak transverse displacement of approximately 2.5 skin panel thicknesses, clearly within the 

geometric nonlinear regime. 

The computational effort required to obtain a long time history of the nonlinear dynamic 

response of the 96,000 degree-of-freedom 9-bay panel was found to be very large. For instance, 

the analysis of 100,000 time steps required approximately 700GB of scratch space and the 

analysis lasted 6 days using 4 cores. Therefore, four time histories of 100,000 time steps were 

analyzed in MSC/Nastran SOL 400, the power spectral densities computed, and their mean used 

for validation of the 85-mode ROM. The ROM results were obtained using a Newmark-β 

scheme with the resulting nonlinear algebraic equations solved using a fixed point algorithm. 

The time step of these computations was selected as 8.33e-5 s. 
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 Shown in Figs. 15 and 16 are plots of the power spectral density of the transverse (T3) and in-

plane (T1 and T2) responses of the middle point of bays 1 and 2 (see Fig. 3(b) for panel 

numbering). The T2 component is very small at the middle point of bay 5; therefore, only the 

power spectral density of the T3 and T1 components are shown in Fig. 17. Finally, the power 

spectral density of the transverse and in-plane components, at point A of the frame, is shown in 

Fig. 18. Clearly, the matching of the T2 and T3 components of the Nastran response is very good 

at all points. Further, the matching of the dominant T1 component at point A is excellent as well. 

In addition, the matching of the dominant peaks of the T1 component of the skin panel is very 

good. 

While it might be appealing to focus solely on the skin panel for the construction of the duals, a 

careful observation of the response of the T1 and T3 components at point A discourages the 

pursuit of this option. Not only is the energy of both components large, but as seen in Fig. 18(b), 

there are two dominant modes in the response of the T1 component. These modes are 1 and 7; 

mode 1 is a global mode, however, the response of mode 7 is mostly localized to the frame 

where point A is contained. The large T1 response of the frames is expected to lead to a 

tangential displacement (T3 direction), which can be modeled with the appropriate dual.  

Besides computational efficiency, another strong advantage of reduced order models is their 

ease in coupling with other discipline codes, especially other reduced order models, at the 

contrary of full order models. In the present context, coupling with the aerodynamics is of 

primary importance because of the loading and potential heating it induces on the structure, with 

the potential of instability (e.g. flutter, buckling) they create. The consideration of heat 

convection to the structure requires the modeling of its temperature distribution and the 

associated coupling with the structural deformations. These latter efforts can also be achieved 
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within a reduced order modeling framework as demonstrated for example in [1,19-21] but will 

not be addressed here further leaving the loading as the sole effect of aerodynamics on the 

structure. 

To demonstrate the coupling, the aerodynamic was represented through a third order piston 

theory with the flow assumed along the x direction, see Fig. 3, on the top of the panel (i.e. the 

side opposite to the longerons).  

According to the third order piston theory, the aerodynamic pressure acting on the panel can be 

expressed as 
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where 3u  is the transverse displacement of the top surface of the panel given by Eq. (5). In Eq. 

(28), ∞p , ∞q , ∞U , ∞M  are the upstream conditions of the static pressure, dynamic pressure, 

speed, and Mach number, respectively. Further, γ = 1.4 for air.  

When coupled with the structural reduced order model, this aerodynamic pressure is projected 

onto the structural basis to obtain the modal forces iF  in Eq. (6), then the governing equation 

becomes  

    iiNLpljijlpljijljijKijjijDijjij FFqqqKqqKqAKqADqM ,,
)3()2(

,
)1(

, )()( ∞=−++−+−+  .    (29) 

In this equation, iF ,∞  is the modal force corresponding to the free stream pressure ∞p , KA
 
and 

DA
 
are the linear aerodynamic stiffness and damping matrices arising from the second term in 

Eq. (28), and iNLF  ,  is the modal force corresponding to the last two terms in Eq. (28) which are 

nonlinear in the structural displacements.  
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The linear aerodynamic matrices KA
 
and DA  were obtained as follows. Consider first the 

former matrix which is induced by the linear displacement-dependent term in Eq. (28), i.e.. 

                                                                

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
∂
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∞

∞
x

u
M
qpLx

32                         (30) 

The resulting modal force iLxF ,  is then expressed as 

                                                                   jijKiLx qAF ,, =                        (31) 

which leads to the identification of KA . That is, determine first )( j
jq ψ  for each j and take its 

3u  component, then compute Lxp  from Eq. (30) given the altitude and Mach number. Finally, 

project that pressure load onto the basis to obtain iLxF , . When 1=jq , iLxF ,  is exactly the 

needed term ijKA , . The matrix DA  was obtained in a similar way from 







∂
∂

=
∞∞

∞
t

u
UM

qpLt
32 .  

The above aero-structure coupling strategy was validated using the flat plate panel example of 

[29]. A nonlinear reduced order model of this panel was generated and the coupling with the 

aerodynamics implemented as discussed above. Then, the amplitudes of post-flutter LCO 

obtained from Eq. (29) for various flow speeds were compared with those given in Fig. 5 of [29]. 

A close agreement was obtained validating the above approach.  

For the 9-bay panel, the altitude and Mach number were assumed to be 40,000ft and 1.6 which 

is below flutter speed. In the computations, the linear aerodynamic matrices were put on the left 

hand side of the equation, and directly added to the linear structural counterparts as shown in Eq. 

(29). The nonlinear aerodynamic force was included in the time marching in the following way: 

at each time step, the physical (finite element) nonlinear aerodynamic force was computed from 
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Eq. (28), then projected onto the structural basis to obtain iNLF  , . Within each time step, it was 

then handled as the quadratic and cubic stiffness terms 

Shown in Figs 15-18 are the corresponding spectra of the displacements induced on the 

aeroelastic system by the acoustic excitation. Comparing the responses with and without 

aerodynamics, it is seen that the latter induces here a reduction of the response which is 

consistent with the flow being below flutter speed. The computations can similarly be carried out 

above flutter speed as well. In such cases, the structural basis must also include all of the linear 

modes required for an accurate prediction of the linear flutter speed and mode, in addition to 

those dictated by the acoustic loading. 

 

SUMMARY 

This paper focused on the development and validation of nonlinear reduced order modeling 

techniques for the prediction of the response of complex structures exhibiting a geometrically 

nonlinear behavior, and modeled within a commercial finite element code. 

A novel identification strategy of the reduced order model parameters was first derived which 

is based on the use of the tangent stiffness  matrix  and  necessitates  a  computational  effort  

only proportional to 2M , where M is the number of basis functions, as opposed to 3M  in the 

current formulations. This novel algorithm leads to large computational savings especially for 

complex structures for which the number of basis functions is large and the computation of a 

nonlinear static solution expensive. 

A 9-bay panel structure modeled with 96,000 degrees of freedom within Nastran was 

considered for the validation of this algorithm and of the “dual” mode concept proposed and 

demonstrated previously on simple structural models. The construction of the reduced order 
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model of the 9-bay panel was described systematically leading to a 85-mode model. 

Comparisons with full finite element results demonstrated that this model provides very accurate 

predictions of both static and dynamic responses of the panel in significantly nonlinear 

situations, e.g. 2.5 thicknesses peak displacements. 

Finally, the coupling of the structural reduced order model with aerodynamics was 

demonstrated in a simple case in which the latter was modeled using third order piston theory. 
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Table 1. Number of static solutions needed for ROM identification 

Number 
of 

Modes 

Imposed Displ. 
Tangent Stiffness 

ID Method 

Imposed 
Displ. Force 
ID Method 

15 135 815 
25 350 3,275 
75 2,950 76,075 

 
 
 
 
 
 

Table 2. 9-bay panel material properties 
Young’s 
Modulus 

10.5×106psi 

Poisson’s 
Ratio 

0.33 

Density 2.614×10-4lbf-s2/in4 
 
 
 
 
 

 
Table 3. Summary of Representation And Prediction Errors 

 Skin Panel Frame-Longeron 
Substructure 

 Rep. 
Err. 

Pred. 
Err. 

Rep. 
Err. 

Pred. 
Err. 

T3 0.28% 1.1% 0.42% 1.3% 
In-
Plane 
Mag 

9.30% 5% 1.67% 12% 

T2 9.11% 3.5% 2.98% 8% 
T1 39.12% 45% 1.67% 13% 
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Figure 1. Displacements from Nastran at two points of a clamped-clamped beam under various 
loadings, transverse displacement at middle point vs. Transverse and inplane displacements at 

quarter point. 
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Figure 2. Sidewall fuselage panel taken from [26]. 9-bay panel is a section of this structure. 

 
 
 
 

 

 
 

Figure 3. Finite element model of the 9-bay fuselage sidewall panel, (a) isometric view, (b) top 
view. 
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Figure 4. Displacements from Nastran at two points of the 9-bay panel under various loadings, 
transverse displacement at the middle point of the center panel and transverse and inplane (T2) 

displacement at the middle point of: a) panel 1 and b) panel 2.  
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Figure 5. Translation magnitude induced by a uniform pressure of 0.6 psi, NX/Nastran. 

 
Figure 6. Translation magnitude induced by a uniform pressure of 0.6 psi, 85-mode ROM. 

 
Figure 7. Magnitude of the in-plane displacement induced by a uniform pressure of 0.6 psi, skin 

panel only, NX/Nastran. 
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Figure 8. Magnitude of the in-plane displacement induced by a uniform pressure of 0.6 psi, skin 

panel only, 85-mode ROM. 

 
Figure 9. In-plane displacement along T2 induced by a uniform pressure of 0.6 psi, skin panel 

only, NX/Nastran. 

 
Figure 10. In-plane displacement along T2 induced by a uniform pressure of 0.6 psi, skin panel 

only, 85-mode ROM. 
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Figure 11. In-plane displacement along T1 induced by a uniform pressure of 0.6 psi, skin panel 

only, NX/Nastran. 

 
Figure 12. In-plane displacement along T1 induced by a uniform pressure of 0.6 psi, skin panel 

only, 85-mode ROM. 
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Figure 13. Nastran linear response induced by a uniform pressure of 0.6 psi, (a) transverse 
component (T3), (b) in-plane component along T2, and (c) in-plane component along T1.  

 

 
Figure 14. Location of selected frame node for output of results. 
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Figure 15. Power spectral density of the transverse (T3) and in-plane (T1 and T2) deflections at 
the middle point of bay 1. Reduced order model and finite element (“SOL 400”), SPL =144dB. 
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Figure 16. Power spectral density of the transverse (T3) and in-plane (T1 and T2) deflections at 
the middle point of bay 2. Reduced order model and finite element (“SOL 400”), SPL =144dB. 
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Figure 17. Power spectral density of the transverse (T3) and in-plane (T1) deflections at the 
middle point of bay 5. Reduced order model and finite element (“SOL 400”), SPL =144dB. 
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Figure 18. Power spectral density of the transverse (T3) and in-plane (T1) deflections at point 

A of the frame. Reduced order model and finite element (“SOL 400”), SPL =144dB. 
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ABSTRACT 

The focus of this investigation is on a first assessment of the predictive capabilities of 

nonlinear geometric reduced order models for the prediction of the large displacement and stress 

fields of panels with localized geometric defects, the case of a notch serving to exemplify the 

analysis. It was first demonstrated that the reduced order models of the notched panel does 

indeed provide a close match of the displacement and stress fields obtained from full finite 

element analyses for moderately large static and dynamic responses (peak displacement of 2 and 

4 thicknesses). As might be expected, the reduced order model of the virgin panel would also 

yield a close approximation of the displacement field but not of the stress one. A detailed 

comparison of the two reduced order models has shown that the difference resides in the basis 

functions employed for the notched panel, more specifically those modeling primarily the in-

plane displacements (the “dual” modes), which notably reflect the presence of the notch. These 

observations have then led to two “enrichment” techniques seeking to superpose the notch 

effects on the virgin panel stress field so that a reduced order model of the latter can be used.  A 

very good prediction of the full finite element stresses, for both static and dynamic analyses, was 

indeed achieved with both enrichments.  
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1. INTRODUCTION 

Interest in the prediction of the dynamic response of thin panels undergoing “large” 

deformations (i.e., exhibiting geometric nonlinearity) has motivated a noteworthy interest in the 

construction of reduced order models (ROMs) from finite element models generated using 

commercial codes (e.g. Nastran, Abaqus), see [1] for a recent review. This non-intrusive 

formulation allows for the relatively straightforward consideration of complex structural 

problems using tools that are routinely used in the industrial setting. The counterpart of these 

advantages is the unavailability of certain information and the uncertainty on the formulation 

implemented in the finite element modeling and response computation. 

Notwithstanding the above difficulties, the ROM capabilities have progressed from 

applications to flat structures (see [2-9]), to moderately large motions of curved structures (see 

[10-14]). Further, the coupling of these nonlinear structural reduced order models with 

aerodynamics, either full or reduced order model has also been successfully demonstrated in [15-

17]. A similar coupling but of the structural dynamics and thermal aspects, the two in reduced 

order model format, has also been proposed and validated in [18-20]. In addition, validation 

studies with experiments have been carried out for different types of panels [3, 23-24]. The 

introduction of uncertainty in the reduced order model has finally been formulated and 

implemented [25,26]. 

The reduced order models developed in the above investigations are parametric, i.e. the form 

of the equations governing the generalized coordinates is fixed, linear in mass and damping 

operators with a stiffness operator exhibiting linear, quadratic, and cubic terms in all 

combinations of generalized coordinates as derived from finite deformation elasticity in the 

reference configuration (see review below). 



Panels represent a basic building block of wings and aircraft fuselage; however, smaller 

scales are also present. These scales may result from the structural design (e.g. fasteners) or may 

arise from damage (e.g. cracks, debonds) and are expected to have a localized effect in the stress 

field. In this light, the focus of the present investigation is on a first assessment of the predictive 

capabilities of reduced order models for panels that have a localized geometric defect, such as a 

notch which will be considered here. Two particular questions to be addressed here are: 

(1) how well do reduced order models capture the stress distribution in the notch near-field, and 

(2) how could the reduced order modeling process of the defect-free (or virgin) panel be 

employed?   

For completeness, the derivation of the reduced order modeling strategy is first briefly reviewed. 

 

2. REDUCED ORDER MODELING 

2.1. Reduced Order Model Form and Governing Equations  

The reduced order models considered here are based on a representation of the nonlinear 

geometric response in terms of a set of basis functions 

       ( ) ( )∑
=

ψ=
M

n

n
n tqtu

1

)(                                                            (1) 

where ( )tu  represents the vector of displacements of the finite element degrees of freedom, )(nψ  

are specified, constant basis functions, and ( )tqn  are the time dependent generalized coordinates.  

The reduced order modeling (ROM) procedure described here is achieved in the undeformed 

configuration 0Ω  for which the field equations are (summation is implied over repeated indices) 

      ( ) iijkij
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ubSF
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0
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where S  is the second Piola-Kirchhoff stress tensor (double underlines are used here for 

matrices), 0ρ  is the density with respect to the reference configuration, and 0b  is the vector of 

body forces, all of which are assumed to depend on the position 0Ω∈X , [27,28]. Further, in Eq. 

(2), F  denotes the deformation gradient tensor of components 
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where ijδ  is the Kronecker delta and Xxu −=  is the displacement vector, x being the position 

vector in the deformed configuration. An important aspect of the present formulation is that the 

material is assumed to be linear elastic in that S  and E  (the Green strain tensor) satisfy 

              klijklij ECS =                                                      (4) 

where C  is a fourth order elasticity tensor, function in general of the undeformed coordinates X  

To proceed, assume next the displacement field iu  in the continuous structure in the form 

          ( ) ( ) ( )∑
=

=
M

n

n
ini XUtqtXu

1

)(,          i = 1,2,3                             (5) 

where ( )XU n
i

)(  are specified, constant basis functions satisfying the boundary conditions also in 

the undeformed configuration.  Equation (5) is the continuous space equivalent of the discrete, 

finite element model, representation of Eq. (1), 

By introducing Eq. (5) in Eqs. (2)-(4) and imposing the condition that the error be orthogonal 

to the basis (Galerkin approach), a set of nonlinear ordinary differential equations for the 

generalized coordinates ( )tqn  can be obtained. This leads [8] to the reduced order model 

equations 



    ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1( .               (6) 

where a linear damping term jij qD   has been added to collectively represent various dissipation 

mechanisms. Further, ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are the 

linear, quadratic, and cubic stiffness coefficients and iF  are the modal forces. Integral 

expressions for all coefficients of Eq. (6) are given in [8]. They can be used for their estimation 

(see [26]) but an indirect evaluation of many of these coefficients from the finite element model 

is also possible (see [1,8,22]). 

From the displacements, a complete solution of the problem and other quantities can then be 

evaluated. For example, any component of the second Piola-Kirchhoff stress tensor at any point 

can be expressed as 

      nm
nm

ijm
m

ijijij qqSqSSS ),()( ~ˆ ++=                                   (7) 

where the coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  depend only on the point X considered. 

 

2.2. Basis Selection 

One of the key aspects of the reduced order modeling strategy is the selection of the basis 

functions )(nψ . A poor representation of the structural response within this basis is expected to 

lead to a poor prediction of the response by the reduced order model. The basis is expected to 

include the modes used for the corresponding linear problem, but this basis needs to be enriched 

to model the difference in physical behavior induced by the geometric nonlinearity. Shell-like 

structures subjected to transverse loading present a clear example of this situation, where the 

linear response is predominantly transverse while the tangential/in-plane displacement field plays 



a fundamental role (the “membrane-stretching” effect, see [1,3,6] for discussion) in large 

motions. 

This issue was addressed in [8] through the inclusion in the basis of an additional set of basis 

functions, referred to as dual modes, aimed at capturing the membrane stretching effects. They 

are extracted from the nonlinear displacement fields of the structure to a series of 

“representative” static loadings. As argued in [8], these representative static loadings should be 

selected to excite primarily the modes from the linear basis. In fact, for a linear analysis the 

loading should only excite these modes, i.e., the applied load vectors )(m
FEF  on the structural 

finite element model should be such that the corresponding linear static responses are of the form  

      ∑ ψα=
i

im
i

mu )()()(                                                         (8) 

which occurs when 

              ∑ ψα=
i

i
FE

(m)
i

m
FE KF )()1()(                                                    (9) 

where )(m
iα  are coefficients to be chosen with m denoting the load case number. A detailed 

discussion of the linear combinations to be used is presented in [8] but, in all validations carried 

out, it has been sufficient to consider the cases 

     )()1()( i
FE

(m)
i

m
FE KF ψα=   i = dominant mode          (10) 

and 

            [ ])()()1()(

2
ji

FE

(m)
im

FE KF ψψα
+=  i =dominant mode, ij ≠                     (11) 

where a “dominant” mode is loosely defined as one expected to provide a large component of the 

panel response to the physical loading. The ensemble of loading cases considered is formed by 



selecting several values of )(m
iα  for each dominant mode in Eq. (10) and also for each mode 

ij ≠  in Eq. (11). Further, note that both positive and negative values of )(m
iα  are suggested and 

that their magnitudes should be such that the corresponding displacement fields )(mu  range from 

near linear cases to some exhibiting a strong nonlinearity. 

The next step consists in the extraction of the nonlinear effects in the obtained displacement 

fields, which is achieved by removing from the displacements fields their projections on the 

linear basis. Finally, a proper orthogonal decomposition (POD) analysis of each set of “nonlinear 

responses” is then sequentially carried out to extract the dominant features of these responses 

which are then selected as dual modes, see [8] for full details on this approach.  

3. MODELS FOR VALIDATION: NOTCHED AND VIRGIN PANEL MODELS 

A beam-like panel with the properties given in Table 1 was considered here with and without 

notch. The panel was assumed to have clamped-clamped boundary conditions and to be 

subjected to a uniform pressure of varying magnitude. 

The notched beam exhibited a rounded notch of length equal to one-fourth of the beam 

thickness placed at 30% of the length of the beam and along its entire width as shown in Figs. 1 

and 2. Clearly, plane stress conditions cannot be assumed to exist on the x-z plane since it is not a 

thin membrane. On the other hand, plane strain conditions do not exist since this is not a long 

body problem. Therefore, the structure was discretized throughout its entire domain with 8-node 

brick elements (CHEXA in NX/Nastran), and 14 such elements were used along the width of the 

beam. Along the length, the notched beam was divided in different parts, as shown in Fig. 1, to 

capture the local effects of the notch without excessive meshing away from that zone. Away 

from the notch (parts (a) and (c) in Fig 1), 4 elements were used through the thickness of the 



beam and a uniform division along the length was performed with 20 elements for part (a) and 

47 elements for part (c). The finer meshing around the notch (part (b) in Fig 1) is shown in Fig. 

2(a). Note further from this figure that the notch is rounded to avoid any plasticity in its vicinity, 

which is not considered in this first effort. The purpose of this work being on the validation of 

the reduced order modeling strategy in comparison with the corresponding finite element 

predictions, a very fine mesh was not necessary and was not used to accelerate the computations. 

A virgin beam model was also considered and, for ease of comparison, its meshing was 

selected to be identical to the one of the notched beam but with the notch filled with CHEXA 

elements, see Fig. 2(b), and with the same material properties, see Table 1. 

 

4. REDUCED ORDER BASIS: NOTCHED AND VIRGIN PANELS 

It was first of interest to compare the basis functions of the reduced order models, i.e., the 

transverse and duals modes, of the virgin and notched beams to assess the effects, local and/or 

global, of the notch. 

The transverse linear modes were first investigated and were obtained, for the two beams, 

from a normal modes solution in NX/Nastran (SOL 103). The natural frequencies of the first 4 

symmetric modes of the two beams are shown in Table 2. As expected, given the small size of 

the notch, its effect on the first few natural frequencies is very small.  

The transverse and in-plane (along the length of the beam) components of the first mode 

shape along one of the top edges of the beams (y=0, z=h) are shown in Figs. 3-4. The first 

observation to be drawn is that the notch does not affect noticeably the transverse displacements, 

but appears to induce a sharp peak in its in-plane counterpart. However, this peak is an artifact of 

the geometry, i.e., the notched beam data presented includes the displacement at the nodes along 



the flat edge of the beam but also those along the faces of the notch. Since these points are much 

closer to the neutral axis of the beam, their in-plane displacements are expected to be smaller as 

seen in Fig. 5. Plotting the same nodal displacements for the virgin beam, see Figs. 6-7, confirms 

this explanation of the peak.    

The linear modes of the structure only represent one part of the basis, modeling primarily the 

transverse displacements, while the dual modes (see [8,9,14]) capture the nonlinearly induced in-

plane motions. In this light, it was also desired to assess the effects of the notch on these dual 

modes. Thus, the 4 dual modes corresponding to the 4 linear modes were created using Eqs (10)-

(11) with mode 1 dominant, for both notched and virgin beams. The POD-based dual mode 

construction procedure highlighted above (see [8] for full details) was performed for the data 

obtained for mode 1 alone and each of the 3 combinations of mode 1 and another of the 3 largest 

responding modes. In each of these 4 situations, 10 different loading factors )(m
iα were used, half 

positive and half negative, and leading to peak deflections ranging from 1 to approximately 4.4 

skin panel thicknesses. The remainders of these 40 deflections, after projection on the 4 linear 

modes identified above, were analyzed by POD. 

Shown in Figs. 8-9 are the transverse and in-plane components of the first (dominant) dual. 

Note that the notch is most present in the transverse component of the dual mode, see Fig. 8, 

which is quite different for the notched and virgin beams. In particular, note for the former the 

presence of a large, broad (as measured by the width of the notch) peak at the location of the 

notch. On the contrary, the in-plane components of this dual mode are almost unaffected by the 

notch, see Fig. 9. The most noticeable difference in the in-plane displacement is a jump 

occurring at the location of the notch, as seen in Fig. 10. Similar observations were drawn for the 

other 3 dual modes. 



Using the 4 linear and 4 dual modes analyzed above, reduced order models were built for 

both notched and virgin beams with the coefficients estimated from the stiffness evaluation 

procedure of [22] as modified in [4,5,8]. 

 

5. STATIC VALIDATION: DISPLACEMENT AND STRESS FIELDS 

To assess the adequacy of the reduced order models obtained and assess the effects of the 

notch, the beams were loaded with uniform pressure acting on the bottom surface. Two different 

pressures were chosen, 2.6kPa and 17kPa, which led to peak transverse displacements of 

approximately 2 and 4 beam thicknesses, well within the nonlinear range. The static responses 

were computed with the reduced order model as well as by a nonlinear NX/Nastran analysis 

(SOL 106). Shown in Figs. 11-14 is a comparison of the predicted transverse and in-plane 

displacements at the beam’s upper and lower edges. Clearly, the matching is excellent for both 

transverse and in-plane displacements, even in the direct vicinity of the notch (see Fig. 15). In 

Figs. 15-16, the response of the virgin beam was plotted at the same node locations as the 

response of the notched beam. Interestingly, the reduced order model of the virgin beam does an 

excellent job in capturing the in-plane displacement field in the notch region.  

    Figures 17-20 show the static response of the beam to pressures equal to -2.6kPa and -17kPa, 

applied on the bottom surface of the beam, and leading to peak transverse displacements of -2 

and -4 beam thicknesses. Clearly, the matching is excellent for both cases, and once more the 

reduced order model of the virgin beam does an excellent job in capturing the in-plane 

displacement field in the notch region. 

Shown in Table 3 is a summary of the prediction errors for the three displacement 

components. The prediction errors were computed from the norm of the difference between 



NX/Nastran and the ROM prediction divided by the norm of the NX/Nastran results. Results are 

shown for the ROMs of the notched and virgin beam. Clearly, the linear modes chosen to 

represent the transverse displacements, along with the modeling of the in-plane displacements by 

the duals, result in a very good matching of the transverse component with respect to 

NX/Nastran. 

The previous results have demonstrated that the reduced order model of the notched beam is 

able to capture accurately the displacement field of this beam, thereby extending published 

validation cases, see [1] for review. Furthermore, it has been observed, not too unexpectedly, that 

the displacement fields of the notched and virgin beams are indeed very close to each other, 

suggesting that the latter could be used for the prediction of the response of the former.  

    Before any such connection can be established, however, it is necessary to assess the 

capability of the notched beam reduced order model to capture the stress distribution of this 

beam. To this end, shown in Figs 23-26 are the dominant stresses xxS along the top edge of the 

beam (y=0, z=h), as computed by the reduced order model of the notched beam, see Eq. (7), and 

by NX/Nastran nonlinear for all loading cases analyzed above. Clearly, the agreement is very 

good to excellent, even in the notch near field, as seen from the results in Tables 3-4. It is thus 

concluded from these validation cases that the nonlinear geometric reduced order modeling 

technique developed is also applicable to notched panels for the prediction of both their 

displacement and stress fields. 

 

6. DYNAMIC DISPLACEMENT AND STRESS FIELDS 

Lastly, a dynamic transverse loading was added and the response computed in NX/Nastran 

SOL 601. The beam was subjected to a uniform pressure on its bottom surface varying randomly 



in time as a white noise band-limited process in the frequency range [0,1042Hz] to simulate an 

acoustic loading.  The acoustic excitation consisted of an overall sound pressure level (OASPL) 

of 147dB. Furthermore, to permit a close comparison between the NX/Nastran and ROM results, 

a simple Rayleigh damping model was adopted, i.e. for which the damping matrix is 𝐷 = α𝑀 +

β𝐾 with α=12.838/s and β=2.061E-6s. This selection led to damping ratios between 0.5% and 

1.3% for all four transverse modes in the excitation band. The time histories computed from the 

reduced order model were obtained with a Newmark-β solver with the resulting nonlinear algebraic 

equations solved using a fixed-point algorithm. A time step of 4E-5s was used for these computations.  

The power spectra of the transverse displacement at the middle of the beam and of the in-

plane displacement at the beam quarter point, both at the upper edge (i.e., y=0, z=h) are shown in 

Figs. 27-29. Clearly, based on the matching of the power spectral density of the NX/Nastran 

results, the ROM of the notched beam and of the virgin beam match very well the dynamics of 

the beam. Interestingly, the matching of the power spectrum of the in-plane displacement along 

the T1 direction at the notch tip is very good as well, even for the ROM of the virgin beam.  

The power spectral density of the dominant Sxx element stresses, at different locations along 

the beam are shown in Figs. 30-32. Away from the notch, the power spectrum of both ROMs 

match NX/Nastran. Figure 32 shows clearly the amplification of the stress field at the notch. The 

power spectrum corresponding to the ROM of the notched beam matches its NX/Nastran 

counterpart very well. 

 

7. STRESS FIELD LOCAL ENRICHMENT 

7.1. Motivation 

The findings from the previous section provide a framework to carry out dynamic 

simulations of the notched beam at a much reduced computational cost than a full finite element 



analysis. Yet, the reduced order model, in both its basis and its coefficients, depends on the crack 

geometry. This property is unfortunate in certain applications in which this geometry may be 

variable, e.g. when considering the notch as an uncertain defect or when envisioning the use of 

the reduced order model for crack propagation.  For such analyses, it would be highly desirable 

to rely on a reference geometry, most simply the virgin beam, and enrich the solution by an extra 

component accounting for the existence and geometry of the crack as opposed to building a new 

reduced order model for every new notch geometry. 

The loading considered in the present validation cases, and representative of the applied 

loads on panels, leads primarily to bending and stretching (from the nonlinear effects) and thus a 

mode I deformation is dominant. Accordingly, it is proposed here to add to the virgin beam stress 

distribution, induced by the pressure loading, a term that accounts for the presence of the crack. 

Following a stress intensity factor perspective, it is suggested that this term, referred to as an 

enrichment, be computed as the increment of stress induced by the crack, for a loading 

corresponding to the in-plane stress distribution of the virgin beam in the vicinity of the crack. 

Further, this enrichment term will be computed in a linear static analysis. Effectively, this 

approach replaces the stress distribution of the virgin beam in the vicinity of the crack by a stress 

distribution of the cracked beam that smoothly connects to the virgin far-field behavior. 

Two separate versions of this strategy were considered and assessed on the notched beam 

from previous sections. In the first one, the loading applied to the notched beam is uniform 

through the thickness with magnitude equal to the stress estimated from the virgin reduced order 

model on the top of the beam at 2 thicknesses away from the notch. Note that the stress 

distribution on the notched beam was computed from the finite element model. However, only 

one such computation is necessary, i.e., for a unit in-plane load, and then is scaled according to 



the stress predicted on the virgin beam. This enrichment is equivalent to having a constant stress 

intensity factor, equal to )nominal((max)
xxxx SS , where )nominal(

xxS is equal to the virgin beam stress. 

The large deformations considered here lead to a coupling between bending and membrane 

stretching that modifies the configuration of the stresses for different loading levels. Therefore, 

the stress intensity factor is also expected to change as the loading level is modified. In this light, 

the second stress enrichment considered was computed by applying a pressure varying through 

the thickness and equal to the xxS  stress distribution at a location 2 beam thicknesses from the 

center of the notch. This pressure distribution was applied in a linear static analysis to one of the 

ends of the beam, while keeping the other end fixed. As with the previous enrichment, this 

analysis was performed on both notched and virgin beams. Then, the resulting stress from the 

notched beam was subtracted by the stress field from the virgin beam to obtain the localized 

stress at the location of the notch. The disadvantage of this method is that a linear static analysis 

has to be performed every time the loading changes. 

 

7.2. Validation of Stress Enrichment: Static Loading 

Shown in Table 4 are the peak stresses at the notch, as computed by the reduced order model 

of the virgin beam with the two enrichments that were previously described. Clearly, the 

agreement is very good for the largest stresses (Case 1 and Case 2). Note that the stresses of the 

NX/Nastran analysis for the virgin beam were enriched as well to assess the accuracy of the 

enrichment procedure independently of the reduced order model. The enriched NX/Nastran 

stress results agree very well with the corresponding predictions on the notched beam.  

 

7.3. Validation of Stress Enrichment: Dynamic Loading 



   For completeness it was desired to assess the effect of the enrichments in a dynamic analysis. 

The dynamic loading described in section 6 was used. The power spectral density of the Sxx 

element stresses, at different locations along the beam are shown in Figs. 33-36. Interestingly, 

both enrichments lead to almost identical stress results. As seen in Fig. 33, the addition of the 

two enrichment schemes to the ROM of the virgin beam, resulted in a good matching of 

NX/Nastran near the notch. This clearly is very pleasing, especially after looking at the results 

shown in Fig. 32. 

 

8. SUMMARY 

The focus of this investigation was on a first assessment of the predictive capabilities of 

nonlinear reduced order models for panels with a localized defect, i.e. a stress “hot spot”. An 

aluminum clamped-clamped beam with a notch placed at 30% of its length and of depth equal to 

a quarter of the thickness was considered as an example. As expected, the notch was found to 

have a negligible effect on the first few natural frequencies of the beam, but also on the 

corresponding mode shapes. In addition, only small notch-related effects could also be detected 

on the in-plane component of the dual modes, which are basis functions constructed to capture 

the nonlinear transverse in-plane coupling occurring in large deformations. However, a large, 

rather broad peak was observed in the smaller transverse component of the dual modes of the 

notched beam which is absent on the corresponding plot for the virgin beam. 

The displacement field induced by a uniform pressure on the beam large enough to induce 

nonlinearity, i.e. peak transverse displacements of the order of 2 and 4 thicknesses, was also 

found to be very weakly dependent on the notch. Further, this displacement field was shown to 

be well predicted by the reduced order models of both cracked and virgin beams. 



In regards to the prediction of the stress field, it was found that the notch beam reduced order 

model was indeed able to capture accurately the stress distribution induced by the pressure 

loading. Excellent prediction of the displacements and stresses was also achieved under dynamic 

loading conditions. 

Nevertheless, it was questioned whether a prediction based on the virgin beam reduced order 

model could also be used if appropriately “enriched” with the notched beam stress field in a 

superposition-like manner. Two enrichment options were assessed that rely on this stress field as 

obtained, in a linear finite element static analysis, from a notched beam subjected to the stress 

state induced on the virgin beam near the notch location. This methodology led to good to 

excellent predictions of the stress field near the notch for both static and dynamic excitations.   
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Table 1. Clamped-Clamped Beam Properties 
Beam Length 0.2286 m 
Cross-section Width 0.0127 m 
Cross-section 
Thickness 7.88 10-4 m 

Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 
Shear Modulus 27,730 MPa 

 

 

 

Table 2. Natural frequencies along with relative error between notched and virgin beams. 

Mode 
No. 

Virgin 
Beam 
(Hz) 

Notched 
Beam 
(Hz) 

Relative 
Difference 
(%) 

1 81.561 81.551 0.010 
3 442.075 441.900 0.040 
6 1098.527 1097.261 0.110 
10 2061.725 2061.693 0.001 

 

 

 

Table 3. Summary of prediction errors, notched beam and virgin beam ROMs. 
Peak T3 Disp 
(Beam 
Thicknesses) 

Prediction Error 
Transverse (T3) 
Component (%) 

Prediction Error 
Transverse (T1) 
Component (%) 

Prediction Error 
Transverse (T2) 
Component (%) 

 Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

2 0.2 0.4 1 1.4 2.4 3.4 
4 0.5 0.9 3.9 3.7 5.9 7.4 
-2 0.3 0.3 1.4 1.4 3.4 3 
-4 1 0.6 3.8 3.9 7.4 7.1 

 



Table 4. Peak in-plane element stresses in the notch region for the four loading cases studied: 
2.6kPa (Case 1), 17kPa (Case 2), -2.6kPa (Case 3), -17kPa (Case 4). Relative errors are with 
respect to the Nastran results of the notched beam. 

Computation Case 1 Case 2 Case 3 Case 4 

 MP
a 

Erel 
(%) 

MPa Erel 
(%) 

MP
a 

Erel 
(%) 

MP
a 

Erel 
(%) 

Nastran Notched 
Beam 32.3  105.7  6.4  55.4  

Nastran Virgin Beam 
+ Enrichment #1 32.2 0.3 107 1.2 7.2 12.5 58.2 5 

Nastran Virgin Beam 
+ Enrichment #2 32.3 0 107.2 1.4 7.1 11 58 4.6 

ROM Notched Beam 32.7 1.2 105.8 0.1 7.3 14 65.2 17 
ROM Virgin + 
Enrichment #1 32.7 1.2 105.6 0.1 9.3 45 67.7 22 

ROM Virgin + 
Enrichment #2 32.8 1.5 105.9 0.2 9.2 44 67.7 22 

 

  



 

 

Figure 1. Notched beam model: Part (b) shows the zone near the notch with a finer mesh than 
parts (a) and (c) which are away from the notch. 

 

 

 

 

 

(a) 

 

(b) 

Figure 2. Geometry and finite element mesh near the notch region: (a) notched beam and (b) 
virgin beam. Where L=0.2286m  and h=7.88x10-4m. 
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Figure 3. Transverse component of the first linear mode along one of the top edges of the beam. 

 

 
Figure 4. In-plane component of the first linear mode along one of the top edges of the beam. 

 
Figure 5. Zoomed-in view of the in-plane displacements near the location of the notch. 
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Figure 6. In-plane component of the first linear mode, curves correspond to displacements at the 

same nodes. 
 
 
 
 
 

 
Figure 7. Zoomed-in view of the in-plane component, curves correspond to displacements at the 

same nodes. 
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Figure 8. Transverse component of the first dual mode along one of the top edges of the beam. 

 

 
Figure 9. In-plane component of the first dual mode along one of the top edges of the beam. 

 

 
Figure 10. Zoomed-in view of the in-plane displacements near the location of the notch. 
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Figure 11. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 
 

 
Figure 12. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
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Figure 13. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 

 
Figure 14. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
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Figure 15. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 

uniform pressure of 2.6kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 
(“NX/Nastran NL”). 

 
 
 

 
Figure 16. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 

uniform pressure of 17kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 
(“NX/Nastran NL”). 
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Figure 17. Transverse disp. at the top (y=0, z=h) edge of the beam induced by a uniform pressure 

of -2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), nonlinear static FEA 
(“NX/Nastran NL”). 

 
 

 
Figure 18. Transverse disp. at the top (y=0, z=h) edge of the beam induced by a uniform 

pressure of -17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), nonlinear static 
FEA (“NX/Nastran NL”). 
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Figure 19. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of -2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 
 

 
Figure 20. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of -17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
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Figure 21. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 

uniform pressure of (a) -2.6kPa and (b) -17kPa. Reduced order models (“ROM 4T4D”), 
nonlinear static FEA (“NX/Nastran NL”). 

 
 

 
Figure 22. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 

uniform pressure of (a) -2.6kPa and (b) -17kPa. Reduced order models (“ROM 4T4D”), 
nonlinear static FEA (“NX/Nastran NL”). 
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Figure 23. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

2.6kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 

 

 
Figure 24. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

17kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 
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Figure 25. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of -

2.6kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 

 
Figure 26. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of -

17kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 
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Figure 27. Power spectral density of the transverse displacement at the beam middle point, 

x=1/2L, y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 

 

 
Figure 28. Power spectral density of the in-plane displacement at the notch tip (OASPL = 

147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 29. Power spectral density of the in-plane displacement at the beam quarter point, x=1/4L, 
y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 

0 200 400 600 800 1000 1200
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

Frequency (Hz)

Po
w

er
-d

is
p

2 /H
z

 

 
NX/Nastran (SOL 601)
ROM 4T4D - Notched Beam
ROM 4T4D - Virgin Beam

0 200 400 600 800 1000 1200
10

-18

10
-17

10
-16

10
-15

10
-14

10
-13

Frequency (Hz)

Po
w

er
-d

is
p

2 /H
z

 

 
NX/Nastran (SOL 601)
ROM 4T4D - Notched Beam
ROM 4T4D - Virgin Beam

0 200 400 600 800 1000 1200
10

-17

10
-16

10
-15

10
-14

10
-13

10
-12

Frequency (Hz)

Po
w

er
-d

is
p

2 /H
z

 

 
NX/Nastran (SOL 601)
ROM 4T4D - Notched Beam
ROM 4T4D - Virgin Beam



 
Figure 30. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

 
Figure 31. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 32. Power spectral density of the Sxx element stress near the notch at y=0, z=h (OASPL = 

147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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Figure 33. Power spectral density of the Sxx element stress near the notch tip at y=0, z=h (OASPL 

= 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 34. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

 
Figure 35. Power spectral density of the Sxx element stress at 2 beam thicknesses from the notch 

tip and y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 
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Figure 36. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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ABSTRACT  
   

The focus of this investigation includes three aspects. First, the development of 

nonlinear reduced order modeling techniques for the prediction of the response of 

complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear 

behavior, and modeled within a commercial finite element code. The present 

investigation builds on a general methodology, successfully validated in recent years on 

simpler panel structures, by developing a novel identification strategy of the reduced 

order model parameters, that enables the consideration of the large number of modes 

needed for complex structures, and by extending an automatic strategy for the selection 

of the basis functions used to represent accurately the displacement field. These novel 

developments are successfully validated on the nonlinear static and dynamic responses of 

a 9-bay panel structure modeled within Nastran. In addition, a multi-scale approach based 

on Component Mode Synthesis methods is explored.  

Second, an assessment of the predictive capabilities of nonlinear reduced order 

models for the prediction of the large displacement and stress fields of panels that have a 

geometric discontinuity; a flat panel with a notch was used for this assessment. It is 

demonstrated that the reduced order models of both virgin and notched panels provide a 

close match of the displacement field obtained from full finite element analyses of the 

notched panel for moderately large static and dynamic responses. In regards to stresses, it 

is found that the notched panel reduced order model leads to a close prediction of the 

stress distribution obtained on the notched panel as computed by the finite element 

model. Two enrichment techniques, based on superposition of the notch effects on the 

virgin panel stress field, are proposed to permit a close prediction of the stress 

distribution of the notched panel from the reduced order model of the virgin one. A very 



 ii 

 

good prediction of the full finite element results is achieved with both enrichments for 

static and dynamic responses.  

Finally, computational challenges associated with the solution of the reduced 

order model equations are discussed. Two alternatives to reduce the computational time 

for the solution of these problems are explored.  
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CHAPTER 1                                                                                                                  

OVERVIEW 

1.1 Motivation 

The development of affordable and reusable hypersonic vehicles has been a goal 

of the USAF and NASA for several years. These hypersonic aircraft operate in very 

complex environments, with loads that arise from the aerodynamics, acoustics, and 

thermal effects. These loads in turn, arise from the engine exhaust, turbulence, 

aerodynamic heating, among other sources (see [1] for a detailed description of these 

conditions). Furthermore, these loads are large enough, alone or in combination, to 

induce geometrically nonlinear behavior of the structure and/or its substructures. The 

nonlinearity results in a stiffening of the structure, due to coupling between bending and 

membrane stretching which occurs as out-of-plane loading is applied. Therefore, the 

geometric nonlinearity is in general beneficial; unfortunately it leads to difficulties in the 

prediction of the response. In addition, the dynamic excitation is also likely to create 

fatigue (sonic fatigue) and eventually cracks in the panels. The appearance of such cracks 

will trigger the key question: when will the panels have to be replaced to maintain safe 

flight conditions? Therefore, there are three computational challenges in the prediction of 

the response of hypersonic aircraft: 

• High loading which results in geometric nonlinear effects. 

• Coupling between aerodynamics, thermal problem, and structure implies three 

separate analyses that must share information. 

• Prediction of fatigue life and damage as well as health monitoring for specific 

mission profiles. 

Clearly, accurate and efficient computational tools are needed to address 

questions during the design stages, but also during the lifespan of the aircraft to be able to 
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deal with maintenance issues in an efficient way. Such predictions are clearly within the 

range of standard, commercial finite element software (e.g. Nastran and Abaqus), but 

even with current computing power they imply a computationally heavy task. The 

computational expense will be even more for panels that have cracks, because of the fine 

meshing required near the cracks to accurately capture the stress field. Furthermore, the 

random nature of the acoustic loading and uncertainties in the loads and in the model, 

would transform the problem into a random vibration one, which might require the 

consideration of multiple time histories in a Monte Carlo setting.   

1.2. Linear Reduced Order Models - Modal Models 

For a system with N degrees-of-freedom a set of N coupled equations has to be 

solved in order to obtain the response of the system. The solution becomes more complex 

as N becomes large. In such cases, a method known as modal analysis [2] allows to 

obtain the dynamic response with a much smaller number of degrees-of-freedom.  

Consider the following discrete N-degree-of-freedom linear dynamic system 

 FuKuDuM =++   (1.1)  

where M, D, and K are the mass, damping, and stiffness matrices of the system; they are 

N × N matrices. The homogeneous solution of the undamped system (D equal to the zero 

matrix) results in N eigenvalues and N eigenvectors (mode shapes). Assuming the 

structure is classically damped, the undamped and damped mode shapes coincide [3]. The 

mode shapes, due to their property of orthogonality, are linearly independent, so they 

form a basis of the N-dimensional space. This means that the solution of Eq. (1.1) can be 

expressed as follows 

 ( ) ( )∑
=

=
N

n

n
n tqtu

1

)(ψ  (1.2)  
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where the ( )tqn  are called the generalized coordinates and )(nψ are the mode shapes.  

Since the mass and stiffness matrices of the system are symmetric, and assuming 

the modes are mass normalized, the following properties follow: 

 

1)()( =




 nTn Mψψ  

2)()(
n

nTn K ωψψ =




  

(1.3)  

where, nω  is the nth natural frequency from the undamped system. Therefore, substitution 

of Eq. (1.2) into Eq. (1.1), pre-multiplying by the transpose of the mode shapes, and 

using Eqs. (1.3) yields a set of uncoupled differential equations 

 NiFqqq iiiiii ,...,1for     2 2 ==++ ωςω 
  (1.4)  

where, ς is the damping ratio of the system. Furthermore, the solution can be 

approximated by truncating Eq. (1.2) to M modes, where M << N.  

1.3. Nonlinear Reduced Order Models 

Linear modal models are easy to build from commercial finite element codes. 

The advantage in using commercial codes is in the availability of a variety of materials, 

boundary conditions, loadings, and types of analyses (e.g., linear static, nonlinear static, 

etc.).  

The extension of linear modal models to the study of structures undergoing 

“large” deformations (i.e., exhibiting geometric nonlinearity) has received significant 

attention during the last decade or so. The formulation of these nonlinear reduced order 

models (ROMs) is based on the use of finite element models generated using commercial 

codes (e.g. Nastran, Abaqus, DYNA3D), see [4] for a recent review. This not only 

facilitates the analysis of realistic structural models and complex boundary conditions, 
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but it also permits a direct transition to the industrial setting where they are routinely 

used.  

The ROM capabilities have progressed significantly during the last decade or so. 

Starting with applications to flat structures, the ROM methodology has been used to 

predict the response of simple clamped-clamped beams (see [5-8]), flat cantilevered 

beams (see [9]), and panels (see [10-12]) under both dynamic and static loadings. Also, 

the analysis of moderately large deflections of curved structures has been performed (see 

[13-17]). The coupling of these nonlinear structural reduced order models with 

aerodynamics, either full or reduced order model, has also been successfully 

demonstrated in [18-20]. The coupling of the structural dynamics and thermal aspects, the 

two in reduced order model format, has been proposed and validated for uniform steady-

state thermal loadings of beams and panels [21], non-uniform transient temperature fields 

of a 3-D panel [22], the structural dynamic analysis of a beam subjected to a moving heat 

flux [23], and the analysis of a 3-D hypersonic panel [24]. 

These developments have dealt with mono-bay structures, i.e., beams and plates 

with various boundary conditions, material properties, and loads. However, structures are 

seldom free of imperfections, and cracks, debonds, fasteners, shock impingement points, 

etc. can have a significant effect in the stress field. Furthermore, aircraft are formed from 

assemblies of elastic substructures and components (e.g., panels, spars, ribs, etc.). 

Therefore, the interaction of these components under high loading conditions can be 

significant. In this light, an important challenge in the development of the ROM 

capabilities is to be able to go from mono-bay structures (“meso” scale) down to the 

“micro” scale and up to the “macro” scale. Shown in Fig. 1.1 is a schematic that 

illustrates these three different scales.  
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Figure 1.1. Schematic showing examples of the micro, meso, and macro scales.  

The final challenge will be to incorporate the multi-scale character of the 

structure with the multidisciplinary nature that arises from the variety of loadings 

described in section 1.1. Shown in Fig. 1.2 is a schematic of these challenges, where all 

the couplings are represented by arrows. The present work will focus on the structural 

problem with acoustic loading.  

 

Figure 1.2. Schematic showing the multi-scale and multidisciplinary aspects of the 
computational challenges in the prediction of the response of hypersonic aircraft 

The objective of the present work is to expand the ROM capabilities to the macro 

and micro-scales. There are two key aspects in the construction of a ROM: the 
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identification of the ROM parameters and the selection of a basis to represent the 

motions. The challenges associated with these two aspects have been seen to increase as 

more complex structural models are studied, since larger ROMs are required to capture 

the dominant aspects of the response. This in turn, implies an increase in the 

computational effort in the identification of the ROM parameters. In this light, a novel 

approach that requires a reduced computational effort for the identification of the ROM 

parameters will be introduced. The other challenge is related to the selection of a basis, so 

a new type of basis enrichment will be presented. Both propositions make use of the 

tangent stiffness matrix of the structure computed at certain displacement configurations. 

Furthermore, they will facilitate the construction of ROMs for complex models such as 

those within the macro-scale category. A validation on a complex structure will proceed. 

The second objective is to assess the ROM capabilities for problems in the 

micro-scale. The main question to be addressed is: Can a displacement-based ROM 

capture a localized stress distribution? The following phenomenological issues will be 

addressed: 

1) Is the displacement field affected by the local defect?  

2) Does the defect need to be accounted for in the displacement? 

3) Can a local enrichment of the stress be developed?  

1.4. Outline 

In Chapter 2 a background of nonlinear reduced order modeling is presented. The 

formulation of the ROM equations, along with the general methodology for the 

identification of the ROM parameters, and a discussion on the selection of the basis to 

represent the displacements is reviewed.  
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In Chapter 3, the formulation of the new identification procedure for the ROM 

parameters is discussed. In addition, the new type of basis enrichment is presented. The 

advantages of the new identification procedure are discussed.  

In Chapter 4, the results of the validation of the methodologies developed in 

Chapter 3 on a complex model will be presented. The validation consists of static and 

dynamic excitations. In addition, a multi-scale approach based on Component Mode 

Synthesis tools is explored on a 9-bay panel.  

The assessment of the ROM capabilities for problem in the micro-scale is done in 

Chapter 5. Both static and dynamic validation results are presented. 

Two algorithmic improvements aimed at reducing the computational time of the 

solution of the ROM equations of motion are presented in Chapter 6. A summary is 

presented in Chapter 7. 
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CHAPTER 2                                                                                            

BACKGROUND ON REDUCED ORDER MODEL FORMULATION 

2.1. Introduction 

A reduced order model (ROM) is defined here as a modal-like representation of 

the displacement field iu     

 ( ) ( ) ( )∑
=

=
M

n

n
ini XUtqtXu

1

)(,  (2.1)  

In these equations, the functions Ui
(m) are specified functions of the position 

vector X in the undeformed configuration, chosen to satisfy the necessary boundary 

conditions. Furthermore, qn(t) is a time dependent generalized coordinate of the 

structural problem, which is required to satisfy the governing equations. The following 

sections will deal with the derivation of the governing equations for the structural 

problem. Then, the reduced order models will be derived following a Galerkin approach. 

Finally, an identification procedure for the parameters of the model as well as the 

selection of the functions Ui
(m) will be reviewed, both based on a commercial finite 

element code.  

 2.2. Geometric Nonlinear Formulation 

In structural dynamic problems related to beams, plates, and shells the von 

Karman strain definition is often used. However, it is of interest here to study a more 

general situation. Thus, an arbitrary linearly elastic (i.e., with a linear relation between 

Green strain and second Piola-Kirchhoff stress tensors) body undergoing large 

deformations will be considered. The elastodynamic problem will be derived in the 

undeformed configuration for convenience in the derivation of the reduced order model. 

In the deformed configuration, the panel is continuously changing; therefore, the basis 
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functions for the reduced order model would similarly vary in order to satisfy the 

geometric boundary conditions, thus the reason for choosing the undeformed 

configuration.  

The position vector of a point of the structure will be denoted by X in the 

reference configuration and x in the deformed one. Then, the displacement vector is         

u = x – X and the deformation gradient tensor F is then defined by its components as 

 
j

i
ij

j

i
ij X

u
X
xF

∂
∂

+=
∂
∂

= δ  (2.2)  

where 𝛿𝑖𝑗 denotes the Kronecker delta. Associated with the displacement field u are 

deformations that are characterized by the Green strain tensor E of components 

 ( )ijkjkiij FFE δ−=
2
1  (2.3)  

In the above equation and in the following ones summation is implied on all 

repeated indices, unless stated otherwise. The equation of motion of the structure is then 

given by (e.g. see [26]) 

 ( ) iijkij
k

ubSF
X

0
0

0 ρρ =+
∂
∂  for 0Ω∈X          (2.4)  

where S denotes the second Piola-Kirchhoff stress tensor, 𝜌0 is the density in the 

reference configuration, and 𝑏0 is the vector of body forces, all of which are assumed to 

depend on the coordinates 𝑋𝑖 and are expressed in the reference configuration, where the 

structure occupies the domain Ω0. The boundary 𝜕Ω0 of the domain, which the structure 

occupies in the reference configuration, is composed of two parts, 𝜕Ω0
t  where tractions 

are prescribed and 𝜕Ω0
u on which displacements are given. Therefore, the boundary 

conditions are 

 00
ikjkij tnSF =      for tX 0Ω∂∈  (2.5)  
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and  

 u = 0                 for uX 0Ω∂∈  (2.6)  

where the displacement boundary condition assumes the corresponding sides to be fixed, 

which is usually the case in structural dynamic problems.  

In Eqs. (2.4) and (2.5) the vectors 𝑏0 and 𝑡0 are obtained by transforming the 

body forces and tractions in the deformed configuration back to the reference 

configuration. This transformation is achieved by the following relations 

 bJb =0      and     t
dA
dat 






=0  (2.7)  

where J is the Jacobian of the transformation ( )Xxx = , i.e. ( )FdetJ = . Also, the area 

ratio can be obtained from Nanson’s formula (see [26]) 

 NFJn
dA
da T−=  (2.8)  

where N is the unit normal vector to the boundary 𝜕Ω0 at point X and n is its counterpart 

in the deformed configuration.  

2.3. Constitutive Relations 

To complete the formulation of the problem, it is necessary to define the material 

constitutive relations, which stem from the Helmholtz free energy (per unit mass) H 

defined as 

 SEH T−=  (2.9)  

where E denotes the elastic energy and S denotes the specific entropy. Then, since the 

second Piola-Kirchhoff stress tensor and the Green strain rate are work conjugates, using 

conservation of energy along with Eq. (2.9) one has 

 ij
Tij

S
E

=










∂
∂H

0ρ  (2.10)  
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SH

−=






∂
∂

ijET
. 

(2.11)  

In the present investigation, the Duhamel-Neumann form of the Helmholtz free 

energy (see [27]) will by assumed, i.e., 

 ( ) ( )000 ,
2
1 TTfETTCEEC ijklijklklijijkl +−−= αρ H  (2.12)  

where C denotes the fourth order elasticity tensor and α is the second order tensor of 

thermal expansion. Furthermore, 𝑇0 is the reference temperature, and  

 ( )











+−








−= 1ln,

000
000 T

T
T
T

T
TTCTTf vρ  (2.13)  

in which 𝐶𝑣 is the specific heat per unit mass measured in the state of constant strain (see 

[27]). 

Introducing Eqs. (2.12) and (2.13) in Eqs. (2.10) and (2.11) leads to the stress-

strain relation 

 
( )[ ]00 TTEC

E
S klklijkl

Tij
ij −−=











∂
∂

= αρ H  (2.14)  

In the sequel, it will be assumed that the structure is not subjected to thermal effects, thus 

Eq. (2.14) reduces to 

 klijklij ECS = . (2.15)  

Finally, the fourth order elasticity tensor C satisfies the symmetry conditions 

 klijijlkjiklijkl CCCC ===  (2.16)  

and the positive definiteness property 

 0≥klijklij ACA  (2.17)  

for any second order tensor A. 
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2.4. Structural Reduced Order Model 

The previous sections have provided the governing equations of the continuous 

problem of determining the stress and displacement fields everywhere in the structure 

considered.  

Substitution of Eq. (2.1) in the equation of motion, Eq. (2.4), introduces an error 

in the solution 

 ( ) ( ) ( ) ( )∑
=

≠







∂
∂

−−=
M

n
jkij

k
i

n
ini SF

X
bXUtqtX

1

0
0

)(
0 0, ρρξ   (2.18)  

where 𝑆𝑗𝑘 is given by Eq. (2.15). It is desired to minimize the error 𝜉𝑖. To this end, 

following a Galerkin approach the error is forced to be orthogonal to the basis functions 

𝑈𝑖
(𝑚)�𝑋� so that 

 ( ) ( )∫Ω0
,)( XdtXXU i

m
i ξ       for m=1,…,M. (2.19)  

Substitution of Eq. (2.18) into Eq. (2.19) yields the weak form of the equation of motion 

 
( ) ( ) ( ) ( )∑ ∫

=
Ω 



















∂
∂

−−
M

n
jkij

k
i

n
in

m
i XdSF

X
bXUtqXU

1

0
0

)(
0

)(

0
ρρ                                                         

.1for                     0 ,...,Mm ==

 

(2.20)  

The last integral in the previous expression can be expressed as  

 

( )

( ) ∫∫

∫

ΩΩ

Ω

∂
∂

−
∂
∂

=

∂
∂

00

0

)(
)(

)()(

                              XdSF
X

U
XdSFU

X

XdSFU
X

U

jkij
k

m
i

jkij
m

i
k

jkij
m

i
k

m
i

 (2.21)  

It follows that, by using the Divergence theorem, the previous expression can be 

simplified into the following  
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( )

∫∫

∫

ΩΩ∂

Ω

∂
∂

−=

∂
∂

00

0

.             
)(

0)( XdSF
X

U
XdtU

XdSF
X

jkij
k

m
i

i
m

i

jkij
k

t

 (2.22)  

It is left to expand the term 𝐹𝑖𝑗𝑆𝑗𝑘 from Eq. (2.22). Using Eqs. (2.2), (2.3), and (2.15) 

 .
2
1























−

∂
∂

∂
∂

∂
∂

= lp
p

s

l

s
jklp

j

i
jkij X

x
X
xC

X
xSF δ  (2.23)  

Using the fact that 𝑢 = 𝑥 − 𝑋 Eq. (2.23) can be expressed as 

 .
2
1













∂
∂

∂
∂

+
∂
∂












∂
∂

+=
p

s

l

s

p

l
jklp

j

i
ijjkij X

u
X
u

X
uC

X
uSF δ  (2.24)  

Substitution of Eq. (2.1) yields 

 
,

2
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X
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U

qq
X

U
qC

X
U

q

SF

δ
 (2.25)  

where summation is implied by repeated indices.  

Subsequently, substitution of Eqs. (2.22) and (2.25) into Eq. (2.20) and after 

some algebraic manipulations, the formulation of the reduced order model is obtained as 

 ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1(   for i=1,…,M (2.26)  

where  

 XdUUM n
i

m
imn

)()(
0

0

∫
Ω

= ρ  (2.27)  
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Ω
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)1(
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(2.28)  

 [ ])2()2()2()2( ˆˆˆ
2
1

npmpmnmnpmnp KKKK ++=  (2.29)  
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and, 

finally, 

  

 ∫∫
Ω∂Ω

+=
t

dstUXdbUF i
m

ii
m

im

00

0)(0)(
0ρ  (2.32)  

The knowledge of the displacements provides a complete solution of the problem 

and other quantities can then be evaluated. For example, any component of the second 

Piola-Kirchhoff stress tensor at any point can be expressed as 

 
nm

nm
ijm

m
ijijij qqSqSSS ),()( ~ˆ ++=

 
(2.33)  

where the coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  depend only on the point X considered. 

2.5. Identification of ROM Parameters  

Formal expressions, as integrals over the undeformed domain of the structure, for 

the stiffness coefficients )1(
ijK , )2(

ijlK , )3(
ijlpK  were obtained above in the process of 

deriving Eq. (2.26). Their use would however require a discretization of the domain 

consistent with the finite element model. To bypass this effort, non-intrusive (or indirect) 

methods (see [4] for review) have been developed to identify these coefficients based on 

computed static responses. 

The estimation of the mass components ijM  and modal forces iF  is achieved as 

in linear modal models, i.e.  
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 )()( j
FE

Ti
ij MM ψψ=     

(2.34)  

 
   ( )tFF Ti

i
)(ψ=  (2.35)  

where FEM  is the finite element mass matrix and F(t) is the excitation vector on the 

structure. 

Next is the determination of the stiffness coefficients )1(
ijK , )2(

ijlK , and )3(
ijlpK . In 

this regard, note first that the linear coefficients )1(
ijK  could be determined as in linear 

modal models, i.e. 

 
   

)()1()()1( j
FE

Ti
ij KK ψψ=  

(2.36)  

where )1(
FEK  is the finite element linear stiffness matrix. 

Another approach must however be adopted for )2(
ijlK  and )3(

ijlpK  as nonlinear 

stiffness matrices are typically not available from a commercial finite element code. A 

reduction in this computational effort is obtained by noting the symmetrical role of the 

indices j and l in the quadratic terms and j, l, and p in the cubic ones, which indicates that 

the summations over those indices can be restricted to p ≥ l ≥ j leading to approximately 

6/4M  coefficients to be identified. 

Two approaches have been proposed to identify the above quadratic and cubic 

stiffness parameters (and potentially the linear ones as well) from a series of static finite 

element solutions. The first one relies on prescribing a series of load cases and projecting 

the induced responses on the basis functions )(nψ  to obtain the corresponding 

generalized coordinates values )( p
jq , p being the index of the load cases (see [6-7]). 

Then, introducing these values into Eq. (2.26) for each load case yields 
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jijl

p
jij FqqqKqqKqK =++

 
                                                                        , i = 1, ..., M        

(2.37)  

where M denotes the number of basis functions (or modes) in the reduced order model. 

Proceeding similarly for P load cases yields a set of linear algebraic equations for the 

coefficients )2(
ijlK  and )3(

ijlpK , and possibly the linear stiffness coefficients )1(
ijK  as well, 

which can be solved in a least squares format to complete the identification of the 

stiffness parameters. 

An alternate strategy has also been proposed (e.g. see [28] and the modification 

of [12]) in which the displacements are prescribed and the required force distributions are 

obtained from the finite element code. The corresponding modal forces are then evaluated 

from Eq. (2.35) and a set of equations of the form of Eq. (2.37) is again obtained. 

Appropriately selecting the displacement fields to be imposed can lead to a particularly 

convenient identification of the stiffness coefficients. Specifically, the imposition of 

displacements proportional to the basis function )(nψ  only, i.e. 

 
   

)(n
nqu ψ=       )(ˆˆ n

nqu ψ=
     

)(~~ n
nqu ψ=  (2.38)  

leads to the 3 sets of equations 

 
ininnnninnnin FqKqKqK =++ 3)3(2)2()1(  (no sum on n) 

    ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1( =++  (no sum on n)           

ininnnninnnin FqKqKqK ~~~~ 3)3(2)2()1( =++  (no sum on n)      
     

 

(2.39)  

in which no sum over the index n is to be understood and for i = 1, ..., M. In fact, these 3 

sets of equations permit the direct evaluation of the coefficients )1(
inK , )2(

innK , and )3(
innnK  



 

 17 

 

for all i. Repeating this effort for  n = 1, ..., M thus yields a first set of stiffness 

coefficients. 

Proceeding similarly but with combinations of two basis functions, i.e. 

 
   

)()( m
m

n
n qqu ψψ +=     m ≥ n                         (2.40)  

and relying on the availability of the coefficients )1(
inK , )2(

innK , )3(
innnK  and )1(

imK , )2(
immK , 

)3(
immmK  determined above, leads to equations involving the three coefficients )2(

inmK , 

)3(
innmK , and )3(

inmmK . Thus, imposing three sets of displacements of the form of Eq. (2.40) 

provides the equations needed to also identify )2(
inmK , )3(

innmK , and )3(
inmmK . 

Finally, imposing displacement fields as linear combination of three modes, i.e. 

 
   

)()()( r
r

m
m

n
n qqqu ψψψ ++=     r ≥ m ≥ n         (2.41)  

permits the identification of the last coefficients, i.e. )3(
inmrK . 

Proceeding either with load cases, i.e. Eq. (2.37), or with imposed displacement 

solutions, Eq. (2.38) and Eqs. (2.40)-(2.41), M coefficients (1 for each value of i) can be 

evaluated for each load/displacement solution. Accordingly, there will be approximately 

6/3M  such solutions to be determined, each one of which requires a full finite element 

nonlinear analysis. For an M = 60 basis function reduced order model, there will thus be 

36,000 solutions which represents a very significant upfront computational effort. 

Note, that the modal forces 𝐹𝑖 will in general be affected by the “pull back” 

operations of Eq (2.7). However, this issue was not addressed here because the 

displacements of the panels considered in this investigation did not exceed a few 

thicknesses.  
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Finally, it remains to discuss the selection of the q values for the imposed 

displacement fields from Eq. (2.38) and Eqs. (2.40)-(2.41). The first difficulty in the 

selection of an appropriate q value lies in the numerical precision of the computations. 

This can be clearly appreciated with an example. Assuming a static displacement 

proportional to the first mode only, Eq. (2.26) becomes equal to 

 
   1

3
1

)3(
1111

2
1

)2(
1111

)1(
11 FqKqKqK =++         (2.42)  

In order to solve for the )3(
1111K coefficient, division by 3

1q would be required. If 1q is a 

very “small” number, then there is the risk of amplifying any “noise” that might be 

present in 1F and/or any of the coefficients )1(
11K and )2(

111K .   When the formulation of the 

finite element code used to create the ROM matches the formulation presented above, i.e. 

it is based on the reference configuration, then any value for the q coefficients (that is 

large enough to avoid numerical errors) would be good enough to identify the stiffness 

coefficients. However, this is not always the case; for example, the geometric nonlinear 

computations in Nastran are carried out with respect to the deformed configuration. So, if 

“large” q values are used, then the Lagrangian formulation used to derive the ROM 

becomes too different from the formulation used by Nastran, and the resulting stiffness 

coefficients do not represent well the problem. Therefore, there exists a range of values 

that yield fitting stiffness coefficients. For problems such as simple beams and panels this 

range has been found to be such that the resulting peak transverse displacement is larger 

than half beam or panel thicknesses but below one thickness.  

2.6. ROM Basis Selection  

The selection of the basis functions )(nψ  represents a key challenge of the 

reduced order modeling strategy: if the structural response is not well represented within 

this basis, the corresponding prediction of the reduced order model will in general be 
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poor. The modes/basis functions needed for a nonlinear problem are certainly expected to 

include those used for the corresponding linear problem, but others are also anticipated to 

model the difference in physical behavior induced by the nonlinearity. This situation is 

particularly clear in shell-like structures subjected to transverse loadings in which the 

linear response is predominantly transverse while the tangential/in-plane displacement 

field plays a fundamental role (the “membrane-stretching” effect, see [4,6-7] for 

discussion) in large motions. 

This issue was addressed in [12] through the inclusion in the basis of an 

additional set of basis functions referred to as dual modes, aimed at capturing the 

membrane stretching effects. The key idea in this approach is to first subject the structure 

to a series of “representative” static loadings, and determine the corresponding nonlinear 

displacement fields. Then, extract from them additional basis functions, the “dual 

modes”, to append to the linear basis, i.e. the modes that would be used in the linear case. 

It was argued in [12] that the representative static loadings should be selected to excite 

primarily the linear basis modes and, in fact, in the absence of geometric nonlinearity (i.e. 

for a linear analysis) should only excite these modes. i.e. the applied load vectors )(m
FEF  

on the structural finite element model should be such that the corresponding linear static 

responses are of the form  

 ∑=
i

im
i

mu )()()( ψα  (2.43)  

which occurs when 

 ∑=
i

i
FE

(m)
i

m
FE KF )()1()( ψα  (2.44)  
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where )(m
iα  are coefficients to be chosen with m denoting the load case number. A 

detailed discussion of the linear combinations to be used is presented in [12] but, in all 

validations carried out, it has been sufficient to consider the cases 

 )()1()( i
FE

(m)
i

m
FE KF ψα=  i = dominant mode (2.45)  

and 

 [ ])()()1()(
2

ji
FE

(m)
im

FE KF ψψ
α

+=    i = dominant mode, ij ≠       
(2.46)  

where a “dominant” mode is loosely defined as one expected to provide a large 

component of the panel response to the physical loading. The ensemble of loading cases 

considered is formed by selecting several values of )(m
iα  for each dominant mode in Eq. 

(2.45) and also for each mode ij ≠  in Eq. (2.46). Note further that both positive and 

negative values of )(m
iα  are suggested and that their magnitudes should be such that the 

corresponding displacement fields )(mu  range from near linear cases to some exhibiting 

a strong nonlinearity. Finally, a proper orthogonal decomposition (POD) analysis of each 

set of “nonlinear responses” is then sequentially carried out to extract the dominant 

features of these responses which are then selected as dual modes, see [12] for full 

details. 

Validating the appropriateness of these dual modes can be done in particular by 

demonstrating notable improvements in the projection of snap-shots of the full response 

on a basis that includes them vs. one that does not, see ensuing section for details. A more 

visual approach would be to demonstrate that the deflections induced by the loadings of 

Eqs. (2.45) and (2.46) are similar to those obtained with the physical loading of interest 

for a broad range of overall magnitude. This effort could be done by plotting the 

corresponding displacement fields and comparing them. A more expedient strategy 
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would be to visualize these displacement fields in the N-dimensional space, where N is 

the number of degrees of freedom of the structure, and to show that the displacements 

induced by the physical loading and by the ones of Eqs. (2.45) and (2.46) closely occupy 

the same part of the space. Since N is typically much larger than 3, this space cannot be 

represented graphically but 2- and 3-dimensional sections of it can be very informative. 

To exemplify this situation, consider the clamped-clamped aluminum beam of 

[21] subjected to both static and dynamic uniform loads. In the absence of symmetry 

breaking, the transverse displacements are symmetric while the in-plane ones are anti-

symmetric. Three representative descriptors of the displacement field are thus the 

transverse displacements of the beam middle and of another point, taken here as the 1/4 

point, and the in-plane displacement of that same off-center point. The magnitude of 

these displacements is plotted vs. each other in Fig. 2.1 for a series of loadings. First are a 

uniform static load of varying magnitude, loads of the form of Eq. (2.45) using the first 

symmetric mode (1-1 Dual) and the second symmetric mode (2-2 Dual), and finally loads 

in the form of Eq. (2.46) with combinations between the first symmetric mode and the 

two following ones (1-2 Dual and 1-3 Dual). Also included in Fig. 2.1 are snap shots of 

the dynamic stationary response to a uniformly distributed load varying randomly in time 

as a white noise bandlimited process in the frequency range [0,1042Hz] simulating an 

acoustic loading of overall sound pressure level (OASPL) of 143dB. 

It is clearly seen from Fig. 2.1 that the displacements induced by the loadings of 

Eq. (2.45) for the 1-1 Dual and Eq. (2.46) closely occupy the same space as both static 

and dynamic physical loads and thus they can efficiently be used in the construction of 

the basis for the representation of the full nonlinear response. Note as well that the 

displacements induced by the loading of Eq. (2.45) for the 2-2 Dual does not occupy the 

same space as the other ones and thus is not a good candidate for the basis, i.e. its 
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inclusion in the basis would not be detrimental but would not be very beneficial either. 

This observation was indeed expected as mode 2 is not a dominant mode, i.e. it does not 

or rarely does (in the dynamic case) represent the largest component of the response. This 

finding confirms the selection strategy of the modes, dominant or not, in Eqs. (2.45) and 

(2.46). The appropriateness of the above duals extends well beyond the uniform loads, 

static or dynamic, discussed above; they are appropriate for the class of loading 

conditions in which the response is dominated by mode 1 (the mode selected as 

dominant). To confirm this expectation, the displacements induced by triangular loads 

(zero at the clamp supports and maximum at the beam middle) are also plotted in Fig. 2.1 

and they also closely occupy the same space.  

 

Figure 2.1. Displacements from NX/Nastran at two points of a clamped-clamped beam 
under various loadings. Transverse displacement at middle point vs. transverse and in-
plane displacements at quarter point 
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CHAPTER 3                                                                                                                   

NEW IDENTIFICATION AND BASIS ENRICHMENT METHODOLOGIES  

3.1. Introduction 

The use of commercial finite element codes enables the straightforward 

consideration of complex models, allows a broad ensemble of possible elements and 

capabilities, but also permits a direct transition to the industrial setting where these codes 

are routinely used. The counterpart of these advantages is the unavailability of certain 

information and the uncertainty on the formulation implemented in the finite element 

modeling and response computation. As seen in Chapter 2, the developed reduced order 

models are parametric, i.e. the form of the equations governing the generalized 

coordinates is fixed, linear in mass and damping operators with a stiffness operator 

exhibiting linear, quadratic, and cubic terms in all combinations of generalized 

coordinates as derived from finite deformation elasticity in the reference configuration. 

One of the key challenges involved in the ROM is accordingly the estimation of the 

parameters of the model from a set of finite element results. As seen in the previous 

chapter, current methods for this identification are based on computed static responses for 

specified loads [6-7], or in reverse, necessary loads to achieve a particular displacement 

(see [12,28]). This strategy becomes computationally expensive as the size of the model 

increases as it is proportional to the third power of the number of modes retained. 

Therefore, a new strategy for the identification of these coefficients, which makes use of 

the tangent stiffness matrix of the structure, will be presented and validated in this 

chapter. It is proportional to the square of the number of modes and thus provides a 

significant reduction in the computational cost associated with the model building. 

A second challenge involved in complex structural model is the selection of the 

basis to represent well and “economically” (with a small basis) the displacements. In this 
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regard, it will be shown that the modes obtained from the tangent stiffness matrix, 

computed at certain displacement configurations, form an excellent enrichment to capture 

the geometric nonlinearities in addition to the modes of the linear structure and the dual 

modes.  

3.2. Identification Methodology for Complex Models 

An alternate identification approach is proposed here, which relies on the 

availability of the final tangent stiffness matrix for each load or imposed displacement 

case. The advantage of this approach is that an M × M matrix is obtained for each 

solution and thus a reduction of the computational effort to ( )2MO  is expected. The 

specific details of this novel algorithm are developed below. 

The iu component of the reduced order tangent stiffness matrix is derived from 

the cubic stiffness operator of Eq. (2.26) as 

 

   

[ ]
[ ] [ ] ljiujlijulijlujiujijuiu

pljijlpljijljij
u

T
iu

qqKKKqKKK

qqqKqqKqK
q

K

)3()3()3()2()2()1(

)3()2()1()(

+++++=

++
∂
∂

=
 

(3.1)  

It is proposed here to determine the stiffness coefficients )1(
ijK , )2(

ijlK , and )3(
ijlpK  by 

imposing the matching, for a series of deformed configurations, of the reduced order 

tangent stiffness matrix with the projection on the basis of its finite element counterpart 

)(ˆ TK . That is,  

 
   

( ) ( ) ΨΨ= )(ˆ)( )()( pTTpT uKqK  where   ( ) ( )pp qu Ψ=        (3.2)  

for a series of p = 1, ..., P deformed configurations. In the above equations, the subscript 

T  denotes the operation of matrix transposition and Ψ is the modal matrix 
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   [ ])()2()1( Mψψψ =Ψ  

(3.3)  

The deformed configurations ( ) ( )pp qu Ψ=  selected here are those of the 

imposed displacement scheme, Eq. (2.38) and Eqs. (2.40)-(2.41). Consider first the 

situation in which the imposed displacement is along a single basis function, i.e. 

)( j
jqu ψ= . The corresponding ROM tangent stiffness matrix can then be written as (no 

sum on j) 

 
   [ ] [ ] 2)3()3()3()2()2()1()(

jiujjijujijjujiujijuiu
T

iu qKKKqKKKK +++++=  (3.4)  

Since the elements )2(
ijlK  and )3(

ijlpK  were assumed to be zero unless p ≥ l ≥ j, the above 

equation is equivalent to 

 
    [ ] 2)3()2()1()()( ˆ jijjujijuiuiu

TTT
iu qKqKKKK ++=ΨΨ=

      
    j < u       

    [ ] 2)3()2()1()()( 32ˆ uiuuuuiuuiuiu
TTT

iu qKqKKKK ++=ΨΨ=    j = u       

    
[ ] 2)3()2()1()()( ˆ jiujjjiujiuiu

TTT
iu qKqKKKK ++=ΨΨ=

          
j > u        

(3.5)  

from which the coefficients )2(
ijlK , )3(

ijjlK , and )3(
ijllK  can be estimated if it is assumed that 

the linear stiffness coefficients are obtained from Eq. (2.36). 

To complete the identification of the reduced order model, it remains to evaluate 

the coefficients )3(
ijluK  for j≠l, j≠u, and u≠l. They can be evaluated from the knowledge of 

)(T
iuK  corresponding to a displacement field which involves both basis functions j and l, 

i.e. of the form of Eq. (2.40). Then, )(T
iuK  is given by Eq. (4.1) for which no summation 

on j and l applies. Specifically, for u > l > j, one has 
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 [ ]
[ ] [ ]2)3(2)3()3()2()2()1(

)()(

         

ˆ

lillujijjuljijlulilujijuiu

iu
TTT

iu

qKqKqqKqKqKK

KK

+++++=

ΨΨ=
 (3.6)  

in which all terms are known except )3(
ijluK . 

Note in the above procedure, that no combination of three modes, as in Eq. 

(2.41), is necessary and thus, as suggested at the beginning of this section, the number of 

deformed configurations to consider is only of order ( )2MO , it is indeed 

( ) 2/12 −+ MMM . To corroborate this analysis, shown in Table 4.1 are the number of 

static solutions required for the new, tangent stiffness-based identification scheme and the 

imposed displacement force-based method. These results clearly show the reduction in 

computational effort necessary which converges to M/3 for large M. 

However, the CPU time required in the construction of the tangent stiffness 

matrix and its transformation to the modal tangent stiffness matrix ought to be taken into 

account to perform a fair comparison. For the 9-bay panel considered in the ensuing 

sections and with 96,156 degrees of freedom, the CPU time required to produce a static 

solution with tangent stiffness matrix was found to be approximately 1.5 times the time to 

obtain the same solution without computing the tangent stiffness matrix. The combination 

of these factors suggests that the net reduction in computational time implied by the 

tangent stiffness algorithm is a factor of the order of M/4 to M/5 for large M. 

Table 3.1. Number of Static Solutions Needed for ROM Identification 

Number 
of 

Modes 

Imposed Displ. 
Tangent Stiffness 

ID Method 

Imposed 
Displ. Force 
ID Method 

15 135 815 
25 350 3,275 
75 2,950 76,075 

A limited set of comparisons were performed, on the 9-bay panel described 

below and on a flat clamped-clamped beam, to assess whether the stiffness coefficients 
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identified by the imposed displacement methods based on the forces and the tangent 

stiffness matrix were noticeably different, and/or they led to reduced order model with 

different predictive capabilities. While some, typically small, differences in the 

coefficients were found, the two methods led to reduced order model predictions that 

were very close to each other suggesting that the methods provide an equal accuracy in 

estimating the stiffness coefficients. 

Finally, another advantage of this method lies in the numerical accuracy issue 

discussed at the end of Chapter 2.4. Indeed, since no combination of three modes is 

needed the largest power in the identification is quadratic. Therefore, smaller values of q 

can be used without bringing a problem of accuracy such as the one described in that 

chapter.  

3.3. ROM Basis for Complex Models 

The dual mode construction from the previous chapter has been very successfully 

applied to various beam and plate structural models, e.g. see [9, 12, 17-25], to capture the 

nonlinear interaction, both static and dynamic, between transverse and “in-plane” 

motions. Its application to the 9-bay panel of [29] did provide a basis that represented 

much better the nonlinear response, especially in the in-plane (tangential) direction, than 

the one based on the linear modes but yet not well enough to obtain an accurate reduced 

order model prediction of the full order Nastran results. This observation suggested that 

the load cases of Eq. (2.45) and (2.46) do provide a very valuable platform to identify the 

nonlinear effects, but it also demonstrated that other, smaller components, are also 

present. 

A potential solution to capture these components of the response would be to 

expand the summation in Eq. (2.46) to include more than 2 modes. Such an effort would 

however likely bring many static solutions to be determined and analyzed. If such modes 
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were indeed included, it would be expected that the coefficients )(m
iα  multiplying them 

would be small, reflecting the small discrepancies observed. Then, the changes in the 

displacement fields )(mu  would probably also be small and thus may be captured in a 

perturbation-like format. Central to such an analysis would be the finite element tangent 

stiffness matrix ( ))(ˆ )( mT uK  evaluated at the displacements )(mu  induced by the loadings 

of Eqs. (2.45) and (2.46). 

The above discussion suggests that this tangent stiffness matrix does also contain 

valuable basis information. To extract it, it was proposed to first proceed with a 

generalized eigenvector analysis of each matrix ( ))(ˆ )( mT uK  yielding the vectors )(m
jφ  

such that 

 ( ) )()()()( )(ˆ m
jFE

m
j

m
j

mT MuK φλφ = . (3.7)  

Next, the eigenvectors )(m
jφ  that are most significantly excited by the loading 

were retained and projected on the basis consisting of the linear and dual modes. Finally, 

a POD analysis of the ensemble of eigenvector projections was carried out to extract the 

new information in the eigenvectors )(m
jφ . The basis functions thus retained to 

complement the linear and dual modes are referred to in the sequel as “tangent dual 

modes”. 

A somewhat similar argument to the one developed above has recently been 

proposed [30] for enriching the linear modes by eigenvectors of the second derivative of 

the tangent stiffness matrix evaluated at the undeformed configuration. 
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CHAPTER 4                                                                                                 

VALIDATION ON A MIDDLE COMPLEXITY MODEL  

4.1. Model Description  

The 9-bay panel of [29] modeled within Nastran was considered for the 

validation of the novel (i) stiffness coefficients identification and (ii) basis selection 

strategy. This panel is a section of the sidewall fuselage panel studied in [31], see Fig. 

4.1. The finite element model of the 9-bay panel, shown in Fig. 4.2, has a total of 96,156 

degrees of freedom. The dimensions of the skin panel are 58.11in by 25.06in, and it is 

subdivided into nine bays by a riveted frame and longeron substructure. Each bay 

measures 18.75in by 7.5in between rivet lines. The thickness of the skin panel and frame 

substructure is of 0.05in and of 0.04in for the longeron substructure. The finite element 

model consists of 4-node plate elements. Furthermore, beam elements were used to 

model the rivets that join the skin panel to the frame and longeron substructures. The 

material properties are shown in Table 4.1.The edges of the skin panel are simply 

supported.  

 

Figure 4.1. Sidewall fuselage panel taken from [31]. 9-bay panel is a section of this 
structure.  

Longeron 

Frame 
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Table 4.1. 9-Bay Panel Material Properties 

Young’s Modulus 10.5×106psi 
Poisson’s Ratio 0.33 
Density 2.614×10-4lbf-s2/in4 

 

 

 

 

Figure 4.2. Finite element model of the 9-bay fuselage sidewall panel, (a) isometric view, 
(b) top view. 

4.2. Reduced Order Model Basis Selection of the 9-Bay Panel 

A series of 10 uniform pressures were applied to the skin panel, and the 

corresponding NX/Nastran nonlinear static responses (SOL 106) were obtained to 

provide a sample of “snapshots” for the reduced order model construction. The 

1 2 3

4 5 6

7 8 9

(a) 

(b) 
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magnitudes of the pressures ranged from 0.015psi to 0.6 psi, which led to peak transverse 

deflections (direction normal to the skin panel) from 0.1 skin panel thicknesses to 2.5 

thicknesses. A reduced order basis formed from 51 linear modes, 13 dual modes, and 18 

tangent dual modes was built to represent the displacements. 

The appropriateness of a basis to model the response can be assessed by the 

representation error 

 

u

uu proj
rep

−
=ε  (4.1)  

where u is the static displacement field computed by the finite element code and proju  is 

its projection on the selected basis. The representation error repε  was plotted as a 

function of the number of retained linear modes and the modes at which noticeable drops 

in this error occurred were recorded. This process led to the identification of a set of 51 

linear modes, with natural frequencies ranging from 68Hz to 900Hz. The resulting 

transverse displacement (T3 or z component) representation errors, for the 2.5 thickness 

level case, were equal to 0.44% for the skin panel and 0.6% for the frame-longeron 

substructure. Furthermore, the representation errors for the in-plane component along the 

length of the skin panel (T1 or x component) were equal to 61% for the skin panel and 

2% for the frame-longeron substructure. The errors for the component along the width 

(T2 or y component), which is the dominant “in-plane” component, were equal to 104% 

for the skin panel and 10% for the frame-longeron substructure, see Table 4.2 for the skin 

panel values. 

The large errors for the in-plane components are fully expected and result from 

the membrane stretching that occurs when the behavior of the panel is in the nonlinear 

regime, and which the linear basis cannot capture. A comparison of these representation 

errors for the skin panel and the frame-longeron substructure suggests that the 
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nonlinearity is dominant in the skin panel with the frame-longeron substructure behaving 

approximately linearly. 

The 10 linear modes with the largest modal components, i.e. modes 1, 5, 7, 9, 13, 

15, 16, 25, 28 and 46, were used to construct the dual modes. Since the modal component 

of mode 1 is much larger than the other ones (by a factor of at least 10) for all static 

responses analyzed, it was considered as the only dominant mode in Eqs. (2.45) and 

(2.46). The POD-based dual mode construction procedure highlighted in Chapter 2 (see 

[12] for full details) was performed for the data obtained for mode 1 alone and each of 

the 9 combinations of mode 1 and another of the 10 largest responding modes. In each of 

these 10 situations, 12 different loading factors )(m
iα were used, half positive and half 

negative, and leading to peak deflections ranging from 0.12 to approximately 0.6 skin 

panel thicknesses. The remainders of these 120 deflections, after projection on the 51 

linear modes identified above, were analyzed by POD. The POD eigenvectors with 

largest eigenvalues and leading to a reduction of the representation error of the T2 

component (i.e., the dominant in-plane component) were selected as dual modes. 

Thirteen dual modes were identified in this manner. The representation error of the 

resulting 64-mode model (51 linear modes and 13 dual modes), shown in Table 4.2, 

indicates a very sharp drop in the T2 direction confirming the appropriateness of the dual 

modes. Another perspective on the adequacy of the dual modes is provided by the 3-

dimensional section of the N-dimensional space of displacements shown in Fig. 4.3, 

which focuses on the transverse displacements at the middle points of the center bay and 

of the corner and side bays (bays 1 and 2, see Fig. 4.2b) and the T2 displacement at these 

latter points obtained from a nonlinear static analysis. Clearly, the duals shown closely 

occupy the same space as the physical uniform loading, as seen in connection with the 

beam model, see Fig. 2.1.  
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Unlike the uniform pressure loading, the loadings used to obtain the 1-1 and 1-16 

duals have dominant components on bays 2, 5, and 8. For this reason, the “1-1 Dual” and 

the “1-16 Dual” curves are much closer to the “Static Uniform Pressure” curve in bay 2 

than in bay 1. On the other hand, the 1-13 dual loading has a dominant component on bay 

5 and its T2 component is dominant near the long edges of the skin panel.  

 
(a) 

 
(b) 

Figure 4.3. Displacements from NX/Nastran at two points of the 9-bay panel under 
various loadings, transverse displacements at the middle point of the center bay and 
transverse and in-plane (T2) displacement at the middle point of: a) bay 1 and b) bay 2.  

The basis was then enriched with the tangent duals, obtained from a POD 

analysis of the eigenvectors of the tangent stiffness matrix computed at peak 
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displacement levels ranging from 0.003 to 0.015 skin panel thicknesses. It was found that 

more valuable information, for the representation of the displacement field, could be 

extracted from the tangent stiffness modes if they were obtained at smaller loading levels 

than the levels used to compute the dual modes. A possible explanation may be related to 

the way the nonlinear stiffening affects the various substructures. Indeed, the nonlinear 

stiffening is more significant in the skin panel than in the frame substructure, since the 

latter is cantilevered (see Fig. 4.2). Therefore, for large loading factors the motion of the 

frame in the tangent stiffness modes becomes dominant. However, the objective of the 

tangent duals is to improve the representation of the in-plane component of the skin 

panel. 

Loadings proportional to combinations of the first mode and modes 5, 13, 15, and 

16 were used and only the first mode, i.e. the one with largest “modal force”, of each 

matrix was computed. This process led to 18 tangent dual modes being selected as 

contributing most to the T2 representation. The final in-plane representation errors for the 

82-mode basis at the 2.5 thickness loading level are shown in Table 4.2 and indicate a 

further drop in the T2 direction as compared to the 64-mode model including only linear 

and dual modes. 

4.3. Static Validation on the 9-Bay Panel 

4.3.1. Uniform Loading 

Having completed the reduced order model construction, it was desired to assess 

its predictive capability in comparison with NX/Nastran. To this end, a loading of 0.6 psi, 

leading to a 2.5 thicknesses maximum skin panel deflection, was considered and shown 

in Figs. 4.4-4.11 are contour plots of the different displacement components. Note the 

excellent matching, both qualitatively and quantitatively, between reduced order model 

and NX/Nastran results. The norm errors of the former in comparison to the latter were  
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1.2% for the transverse (T3) component, 3.3% for the in-plane T2 component, 36% for 

the other, smaller, in-plane component T1, and 4.3% for the in-plane magnitude (see also 

Table 4.2). Clearly, the matching of the dominant components, T3 and T2, is very good. 

On the other hand, the relative error of the T1 component is still rather large but it is clear 

from Figs. 4.6-4.11 that this component is much smaller than its T2 counterpart (as stated 

above). The summary of representation and prediction errors for the skin panel presented 

in Table 4.2 highlights the benefits of each set of basis functions: linear modes, dual 

modes, and tangent dual modes. Note as well that the final prediction error is only 

slightly larger than its prediction counterpart suggesting that the model has indeed 

reached a converged solution near the optimum projection point of the Nastran 

displacements on the basis.  

The prediction errors for the frame substructure were equal to 1.3% for T3, 21% 

for T1, 2% for T2, and 19% for the magnitude of the in-plane displacements. 

Table 4.2. Summary of Representation and Prediction Errors - Skin Panel. 

 51-Mode Rep. 
Error 

64-Mode Rep. 
Error 

82-Mode Rep. 
Error 

82-Mode 
Prediction 

Error 
T3 0.44% 0.35% 0.3% 1.2% 

In-Plane 
Mag. 90% 6.8% 3.4% 4.3% 

T2 104% 6.4% 1.8% 3.3% 
T1 61% 31% 31% 36% 
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Figure 4.4. Translational displacement magnitude induced by a uniform pressure of 0.6 
psi, NX/Nastran. 

 

Figure 4.5. Translational displacement magnitude induced by a uniform pressure of 0.6 
psi, 82-mode ROM. 
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Figure 4.6. Magnitude of the in-plane displacement induced by a uniform pressure of 0.6 
psi, skin panel only, NX/Nastran. 

 

Figure 4.7. Magnitude of the in-plane displacement induced by a uniform pressure of 0.6 
psi, skin panel only, 82-mode ROM. 
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Figure 4.8. In-plane displacement along T2 induced by a uniform pressure of 0.6 psi, skin 
panel only, NX/Nastran. 

 

 

Figure 4.9. In-plane displacement along T2 induced by a uniform pressure of 0.6 psi, skin 
panel only, 82-mode ROM. 
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Figure 4.10. In-plane displacement along T1 induced by a uniform pressure of 0.6 psi, 
skin panel only, NX/Nastran. 

 

Figure 4.11. In-plane displacement along T1 induced by a uniform pressure of 0.6 psi, 
skin panel only, 82-mode ROM. 

A peak displacement of 2.5 thicknesses is usually considered to be well within 

the nonlinear range for a clamped-clamped panel. To confirm this assessment, a linear 

NX/Nastran analysis was carried out for the same loading condition and shown in Figs. 

4.12-4.15 are the resulting T3, T2, and T1 components of the skin panel displacements. 

Note the dramatic difference in the T2 displacements between linear and nonlinear 
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analyses (Figs. 4.8 and 4.14). Fewer differences in the shape of the T3 components are 

observed, but the peak magnitude is notably reduced in the nonlinear case, 2.5 

thicknesses as compared to 5 thicknesses in the linear case, as expected. 

 

Figure 4.12. NX/Nastran linear response induced by a uniform pressure of 0.6 psi, 
translational displacement magnitude.  

 

Figure 4.13. NX/Nastran linear response induced by a uniform pressure of 0.6 psi, in-
plane component magnitude.  
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Figure 4.14. NX/Nastran linear response induced by a uniform pressure of 0.6 psi, in-
plane component along T2.  

 

Figure 4.15. NX/Nastran linear response induced by a uniform pressure of 0.6 psi, in-
plane component along T1.  

4.3.2. Non-Uniform Loading 

The modes of the 82-mode ROM were selected to reduce the representation 

errors from a series of uniform loading cases. In this light, it was desired to assess this 

model in a non-uniform loading case. To this end, the nonlinear static response due to a 

non-uniform pressure on the skin panel, varying as a function of x and uniform with 
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respect to y, was computed. Shown in Fig. 4.16 is the spatial variation of the loading with 

respect to x. This loading led to a peak transverse displacement of 2.5 skin panel 

thicknesses.  

 

Figure 4.16. Non-uniform pressure variation along the skin panel.  

Shown in Table 4.3 are the prediction errors for the skin panel transverse and in-

plane degrees-of-freedom, the matching with NX/Nastran is excellent. The prediction 

errors for the frame substructure were equal to 1% for T3, 17% for T1, 2.6% for T2, and 

15% for the magnitude of the in-plane displacements. Shown in Figs. 4.17-4.24 are 

contour plots of the different displacement components.  

Table 4.3. Summary of Prediction Errors - Skin Panel. 

 
82-Mode 
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T3 0.9% 
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Figure 4.17. Translational displacement magnitude induced by a non-uniform, 
NX/Nastran. 
 

 

Figure 4.18. Translational displacement magnitude induced by a non-uniform, 82-mode 
ROM. 
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Figure 4.19. Magnitude of the in-plane displacement induced by a non-uniform, skin 
panel only, NX/Nastran. 

 

 

Figure 4.20. Magnitude of the in-plane displacement induced by a non-uniform, skin 
panel only, 82-mode ROM. 
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Figure 4.21. In-plane displacement along T2 induced by a non-uniform, skin panel only, 
NX/Nastran. 

 

 

Figure 4.22. In-plane displacement along T2 induced by a non-uniform, skin panel only, 
82-mode ROM. 
 



 

 46 

 

 

Figure 4.23. In-plane displacement along T1 induced by a non-uniform, skin panel only, 
NX/Nastran. 

 

Figure 4.24. In-plane displacement along T1 induced by a non-uniform, skin panel only, 
82-mode ROM. 
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4.4. Dynamic Validation on the 9-Bay Panel of Conventional ROM 

The 9-bay panel was subjected to a uniform pressure on its top surface varying 

randomly in time as a white noise band-limited process in the frequency range [0,500]Hz 

to simulate an acoustic loading.  The acoustic excitation consisted of overall sound 

pressure levels (OASPL) of 136dB and 146dB. Furthermore, to permit a close comparison 

between the full finite element and ROM results, a simple Rayleigh damping model was 

adopted, i.e. for which the damping matrix is 𝐷 = 𝛼𝑀 + 𝛽𝐾 with α=7.55/s and β=5.6E-

6s. This selection led to damping ratios between 0.65% and 1% for all transverse modes 

in the excitation band. 

4.4.1 Linear Dynamic Results 

The computational effort required to compute the full dynamic response of the 

96,156 degree-of-freedom 9-bay panel was found to be too high with NX/Nastran SOL 

109 (full transient analysis). For instance, the amount of scratch space needed to compute 

the response of a relatively short time history of 50,000 time steps was approximately 

equal to 320GB. The specifics of why so much scratch space is needed are not known to 

the author; however, a newer solver in NX/Nastran, SOL 601, was found to be more 

computationally expedient and it can be used to solve linear and nonlinear problems. This 

new solver is an integration of the ADINA solver into NX/Nastran, and consequently the 

elements use a different formulation than the conventional NX and MSC Nastran solution 

sequences, like SOL 109, and some differences in the natural frequencies were found. 

Since it was not possible to obtain a time history of the response large enough with SOL 

109, a modal transient analysis was performed with the first 89 modes which have natural 

frequencies within the frequency band of excitation. A comparison between SOL 601 (in 

its linear mode) and the modal analysis, for an acoustic excitation of 106dB, is shown in 

Figs. 4.25-4.28 at selected points. These points correspond to the middle points of bays 1, 
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2 and 5, and point A (see Fig. 4.29) in the frame substructure. The middle point of bay 5 

is where the maximum global T3 displacement occurs; the middle point of bay 2 is near 

the peak of the T2 component; near the middle point of bay 1 the nonlinear effects on the 

T1 component can be observed; and point A in the frame is important because it is where 

the T1 and T3 components are dominant in the frame-longeron substructure.  

The large modal density in the frequency range considered in this analysis can be 

clearly seen by the large number of peaks in the power spectral density plots. The family 

of modes between 334Hz to 434Hz has very small modal amplitudes in the transverse 

direction at the middle points of bays 2 and 5, which explains the sharp drop in energy in 

that frequency band. Finally, the sharp drop in the energy at 500Hz is because the 

acoustic excitation has no energy to induce resonance of the modes with natural 

frequencies higher than 500Hz.  
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(a) 

 
(b) 

Figure 4.25. Power spectral density of the transverse (T3) and in-plane (T1) deflections at 
the middle point of bay 5. Full transient finite element analysis (“SOL 601”) and transient 
modal analysis, SPL =106dB.  
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(a) 

 
(b) 

 
(c) 

Figure 4.26. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 2. Full transient finite element analysis (“SOL 
601”) and transient modal analysis, SPL =106dB.  
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(a) 

 
(b) 

 
(c) 

Figure 4.27. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 1. Full transient finite element analysis (“SOL 
601”) and transient modal analysis, SPL =106dB.  
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(a) 

 
(b) 

Figure 4.28. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at point A of the frame. Full transient finite element analysis (“SOL 601”) and 
transient modal analysis, SPL =106dB.  

 
Figure 4.29. Location of selected frame node for output of results.  

0 100 200 300 400 500
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

Frequency (Hz)

Po
w

er
-d

is
p

2 /H
z

 

 
SOL 601 T3 Frame
Modal Analysis T3 Frame

0 100 200 300 400 500
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

Frequency (Hz)

Po
w

er
-d

is
p

2 /H
z

 

 
SOL 601 T1 Frame
Modal Analysis T1 Frame

A



 

 53 

 

4.4.2. Nonlinear Dynamic Validation Results 

Two excitation levels were used for the dynamic validation; the first one with a 

sound pressure level of 136dB, which led to a peak transverse displacement of 

approximately 1 skin panel thickness; and the second one with a sound pressure level of 

146dB, which led to a peak transverse displacement of approximately 2.5 skin panel 

thicknesses. These two levels ranged from lowly to highly nonlinear.  

The computational effort required to obtain the nonlinear dynamic response of 

the 96,156 degree-of-freedom 9-bay panel was found to be very large. Two different 

solvers were considered: MSC/Nastran SOL 400 and NX/Nastran SOL 601. The 

advantage of using SOL 400 is that it shares the same element formulation as SOL 106, 

which was used to identify the nonlinear stiffness coefficients of the reduced order 

model. Unfortunately, a very large amount of disk space was required to store the scratch 

data generated during the run (e.g., 700GB for 100,000 time steps), a successful SOL 400 

simulation of a long time history was not possible given our current computational 

resources. Therefore, NX/Nastran SOL 601 was chosen. The wall time used for the 

solution of 250,000 time steps was approximately equal to 8 days using 6 processors.  

 A series of 200 “snapshots” were obtained from the stationary part of the 

NX/Nastran SOL601 dynamic simulation for the 136dB and 144dB excitation levels. The 

representation errors were computed and the mean representation error was used as a 

measure of the appropriateness of the basis. Shown in Table 4.3 are the mean 

representation errors, for both excitation levels, corresponding to the 82-mode basis 

identified in a previous section. Clearly, the errors are large, especially for the 144dB 

level. Therefore, the basis identification procedure described for the static validation was 

used with the “snapshots” of the dynamic problem. A reduced order basis was identified 
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from 48 linear modes and 21 dual modes. The mean representation errors for this basis 

are also shown in Table 4.4.  

The first 9 dominant linear modes were 1, 13, 16, 25, 15, 7, 5, 28, and 46; where 

the modes were sorted from most to least dominant. The modal component of mode 1 

was found to be larger than the other ones for most of the dynamic “snapshots” analyzed; 

therefore, it was considered as the only dominant mode in Eqs. (2.45) and (2.46). The 21 

dual modes of the 69-mode basis were obtained from the 5 most dominant modes. The 

POD-based dual mode construction procedure highlighted above was performed for the 

data obtained for mode 1 alone and each of the n combinations of mode 1 and another of 

the n largest responding modes, where n is equal to 4. For each of these n situations, 12 

different loading factors )(m
iα were used, half positive and half negative, and leading to 

peak deflections ranging from 0.6 to approximately 1.3 skin panel thicknesses. The 

residuals of these 12×n deflections, after projection on the 48 linear modes identified 

above, were analyzed by POD. The POD eigenvectors with largest eigenvalues and 

leading to a reduction of the representation error of the T2 component (i.e., the dominant 

in-plane component) were selected as dual modes. Shown in Table 4.4 are the mean 

representation errors for the 69-mode model. Clearly, the representation of the response 

corresponding to both excitation levels is better than for the 82-mode model. 

Table 4.4. Summary of Mean Representation Errors - Skin Panel 

 69-Mode 
(136dB) 

82-Mode 
(136dB) 

69-Mode 
(144dB) 

82-Mode 
(144dB) 

T3 0.2% 0.2% 0.5% 0.7% 
In-Plane 

Mag. 3.3% 16.8% 14.6% 37.3% 

T2 3.7% 23.4% 19.7% 55.7% 
T1 6.6% 26.2% 22.6% 61.1% 
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Next, it was desired to assess the predictive capabilities of the reduced order 

models in comparison with the dynamic solution of SOL601 in NX/Nastran. Shown in 

Figs. 4.30 and 4.31 are plots of the power spectral density of the transverse (T3) and in-

plane (T1 and T2) responses of the middle point of bays 1 and 2 (see Fig. 4.2(b) for panel 

numbering). The T2 component is very small at the middle point of bay 5 and point A 

(see Fig. 4.29) of the frame; therefore, only the power spectral density of the T3 and T1 

components are shown in Figs. 4.32 and 4.33. Clearly, the matching of the T3 component 

is very good. Furthermore, the dominant aspects of the in-plane response (i.e., the first 

peaks for which the energy of the response is larger) are also captured well. Most of the 

peaks of the power spectral plots are sharp, which indicates that the level of nonlinearity 

is not too large for this excitation level.  

The power spectral densities of the transverse (T3) and in-plane (T1 and T2) 

responses of the middle points of bays 1 and 2 are shown in Figs. 4.34 and 4.35. The 

results for the T3 and T1 components of the middle point of bay 5 and point A of the 

frame are shown in Figs. 4.36 and 4.37. The matching of the first peak of the T3 

component (dominant component) is excellent for all cases. Furthermore, the energy 

level of the rest of the peaks was well captured by the 69-mode model, except for the 

frame, where it can be seen that the ROM response is stiffer than the SOL 601 results. 

The matching of the T2 component at bays 1 and 2 is excellent for all frequencies. The 

correlation of the first peak of the T1 component is very good for all cases.  

The wall time used for the solution of 250,000 time steps was approximately 

equal to 10 days using only 1 processor (please see Chapter 6 for a discussion on 

algorithmic improvements that permit the reduction of the computational time). 
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a) 

 
b) 

 
c) 

Figure 4.30. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 1. Reduced order model and finite element (“SOL 
601”), SPL =136dB. 
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a) 

 
b) 

 
c) 

Figure 4.31. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 2. Reduced order model and finite element (“SOL 
601”), SPL =136dB. 
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a) 

 
b) 

Figure 4.32. Power spectral density of the transverse (T3) and in-plane (T1) deflections at 
the middle point of bay 5. Reduced order model and finite element (“SOL 601”), SPL 
=136dB. 
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a) 

 
b) 

 
Figure 4.33. Power spectral density of the transverse (T3) and in-plane (T1) deflections at  
point A of the frame. Reduced order model and finite element (“SOL 601”), SPL 
=136dB. 
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a) 

 
b) 

 
c) 

 
Figure 4.34. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 1. Reduced order model and finite element (“SOL 
601”), SPL =144dB. 
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a) 

 
b) 

 
c) 

 
Figure 4.35. Power spectral density of the transverse (T3) and in-plane (T1 and T2) 
deflections at the middle point of bay 2. Reduced order model and finite element (“SOL 
601”), SPL =144dB. 
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a) 

 
b) 

Figure 4.36. Power spectral density of the transverse (T3) and in-plane (T1) deflections at 
the middle point of bay 5. Reduced order model and finite element (“SOL 601”), SPL 
=144dB. 
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a) 

 
b) 

Figure 4.37. Power spectral density of the transverse (T3) and in-plane (T1) deflections at 
the frame. Reduced order model and finite element (“SOL 601”), SPL =144dB. 
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although they are less significant in the nonlinear case. The 69-mode model still does a 

good qualitative job, although a better matching of the third and fourth peaks of the T3 

components would be desired.  

 
a) 

 
b) 

Figure 4.38. Power spectral density of the transverse (T3) and in-plane (T1) deflections at 
the middle point of bay 5. Reduced order model and finite element (“SOL 400” and 
“SOL 601”), SPL =144dB. 
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a) 

 
b) 

Figure 4.39. Power spectral density of the transverse (T3) and in-plane (T2) deflections at 
the middle point of bay 2. Reduced order model and finite element (“SOL 400” and 
“SOL 601”), SPL =144dB. 
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400 and SOL 601 responses. The first peak of the SOL 601 response has a lower 

magnitude and it’s located at a higher frequency than the first peak of the SOL 400 

response. This indicates that the response from SOL 601 is stiffer. This, in fact, can be 

observed with the other peaks as well.  

A comparison between SOL 400 and the 69-mode ROM is shown in Figs. 4.44-

4.46. Clearly, the most dominant features of the response are well captured by the 69-

mode model. The matching of the T2 component is very good for all frequencies; the 

correlation of the T1 and T3 components is good for frequencies within the frequency 

band of excitation.   

The results presented for the static and dynamic validations show that the ROM 

methodology can be used for the approximation of the response of complex structures.   

 

Figure 4.40. Time history of the loading.  
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Figure 4.41. Frequency content of the loading.  

 

Figure 4.42. Transverse displacement of the middle point of the middle panel (full FEA 
results) as a function of time.  
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Figure 4.43. Transverse displacement of the middle point of bay 5 as a function of 
frequency, MSC/Nastran SOL 400 and NX/Nastran SOL601.  

 

Figure 4.44. Transverse displacement of the middle point of bay 5 as a function of 
frequency, MSC/Nastran SOL 400 and ROM 69-mode model.  
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Figure 4.45. In-plane (T2) displacement of the middle point of bay 2 as a function of 
frequency, MSC/Nastran SOL 400 and ROM 69-mode model.  

 

Figure 4.46. In-plane (T1) displacement of the middle point of bay 1 as a function of 
frequency, MSC/Nastran SOL 400 and ROM 69-mode model.  
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freedom. Nonetheless, the 9-bay panel used in this validation effort is made of different 

substructures, which makes a multi-scale approach an attractive alternative to the 

monolithic ROM. In this case, the full model corresponds to the “macro-scale” and the 

response of a single bay lies in the “meso-scale”.  

In this light, a reduced order model could be built for each substructure at a time 

in a Bottom-Up approach, and then these reduced order models assembled in order to 

predict the response of the entire structure (see left half of Fig. 4.47). Or, the global 

response of the entire model could be approximated and the interface information of a 

particular substructure used to compute the response of that substructure in a Top-Down 

approach (see right half of Fig. 4.47).  

 

Figure 4.47. In-plane (T1) displacement of the middle point of bay 1 as a function of 
frequency, MSC/Nastran SOL 400 and ROM 69-mode model.  

The modeling of a panel as part of the assembly is a key aspect in both 

approaches, and the successful development of reduced order models for single beams 

and panels during the last decade or so makes the proposed multi-scale approach very 

appealing. Another advantage of this approach is in a possible reduction of the 

computational cost, which could be achieved by building the reduced order model of one 

substructure at a time. Furthermore, a multi-scale approach may help in gaining a better 
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understanding of the complexities of the response induced by the interaction between 

substructures.  

In the present work, a first assessment of a Bottom-Up approach, based on the 

Criag-Bampton Method, will be presented. 

4.3.1. Background on CMS 

The objective of Component Mode Synthesis methods in the analysis of dynamic 

structures is to reduce the complexity associated with large finite element models that 

arise from complex structures. In essence, these methods involve the division of the 

structure into substructures, the development of reduced order models of the 

substructures, and the coupling of the component reduced order models to form one for 

the entire system [32]. In general, the accuracy of the reduced order model is improved 

by using an increasing quantity of modes in each substructure.  

The equation of motion of an undamped substructure s may be written as follows, 

 )()()()()( sssss FuKuM =+ . (4.2)  

where )(sM , )(sK , )(su , and )(sF  are the mass matrix, stiffness matrix, displacement 

vector, and the force vector of the substructure, all expressed in physical coordinates. The 

mass and stiffness of substructure s can be expressed as follows, 

 s

BBBi

iBii
MM
MM












 (4.3)  

 s

BBBi

iBii
KK
KK












 (4.4)  

where i corresponds to the interior degrees-of-freedom and B corresponds to the 

boundary degrees-of-freedom.  
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A reduced order model of the substructure, using the Craig-Bampton method, can 

be obtained by expressing the internal and boundary degrees-of-freedom as 

 

)()(

)()()()()(

ss
B

sssss

Yu

Yqu

=

Ξ+Φ=
 (4.5)  

where )(sΦ denotes a matrix of p selected fixed-interface modes, where one of its 

columns jϕ is obtained from 

 )()()()()( s
j

s
ii

s
j

s
j

s
ii MK ϕλϕ = . (4.6)  

Furthermore, Ξ  is the matrix of constraint modes obtained as follows 

 ( ) )(1)()( s
iB

s
ii

s KK
−

−=Ξ . (4.7)  

Finally, the vector )(sq contains the generalized coordinates of the fixed-interface modes.  

The transformation matrix where the fixed-interface modes and constraint modes 

are included is 

 


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

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 ΞΦ
=

I
T

s
s

0

)(
)(

1  (4.8)  

where I  denotes the identity matrix of appropriate dimensions.  

The reduced Craig-Bampton mass and stiffness matrices can be obtained as 

follows 
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and 
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Two observations from the stiffness matrix are in order. First, the top left 

partition is diagonal and it contains the eigenvalues of the fixed-interface problem. 

Second, the fixed-interface modal coordinates and the modal coordinates from the 

constraint modes are uncoupled. This means that the only coupling between these sets of 

coordinates appears in the dynamic case since the mass matrix is full.  

The reduced order model that results from the Craig-Bampton method has two 

types of degrees-of-freedom: modal coordinates for the interior degrees-of-freedom and 

physical coordinates for the boundary degrees-of-freedom. A “full” reduced order model 

can be developed by expressing the physical boundary degrees-of-freedom of the entire 

system [33] as 

 zY Ψ=  (4.11)  

where [ ]rψψψ    ...      21=Ψ  is a matrix whose columns are the eigenvectors 

corresponding to  

 
jBBjjBB MK ψλψ = . (4.12)  

This second reduction of degrees-of-freedom is achieved by the following transformation 

matrix 

 





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
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0
2

I
T . (4.13)  

Using this transformation, the mass and stiffness matrices are reduced as follows 
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and 
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4.3.2. Modeling Assumptions 

The 9-bay panel was divided into 11 substructures as shown in Fig. 4.48; the skin 

panel was divided into 9 bays of equal size (substructures 1 to 9); the part of the skin 

panel surrounding the bays (substructure 10); and the frames and longerons (substructure 

11). For most of the bay boundaries the skin panel is riveted to the frame-longeron 

substructure. However, as shown in Fig. 4.49 there are some nodes on the skin panel, 

between the frames and the longerons, which are not attached to the frame-longeron 

substructure; these are the nodes next to the red dots shown in Fig. 4.49. This has a local 

effect in the linear response, but also in the in-plane displacement induced by the 

nonlinear response.  

It was seen that the fixed-interface modes of substructure 10 did not have a 

visible contribution in the synthesis of the global modes; therefore, only the constraint 

modes for this substructure were kept. 

 

Figure 4.48. 9-bay panel divided into 11 substructures. 
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Figure 4.49. Zoomed-in view of skin-frame connection. 

It is of interest to use the Craig-Bampton Method to create a basis for the 9-bay 

panel following a Bottom-Up approach. Based on the previous discussion, there are two 

families of modes that need to be obtained: i) fixed-interface modes and ii) constraint 

modes. Shown in Fig. 4.50 is a contour plot of the transverse component of the first 

fixed-interface mode of one of the bays of the 9-bay panel. Shown in Fig. 4.51 is a 

constraint mode, obtained from the linear static response due to a unit displacement in the 

transverse direction of an interface node of one of the bays. The constraint modes 

computed by imposing a unit in-plane displacement along the T1 or T2 direction also 

resulted in a localized transverse response. However, the transverse response due to a unit 

rotation with respect to a vector along the T1 or T2 direction (R1 and R2, respectively) 

was not localized. 

 

Figure 4.50. Transverse component of a bay first fixed-interface mode. 
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Figure 4.51. Transverse component of the linear static response due to a unit 
displacement in the transverse direction of an interface node of one of the bays. 

The number of boundary and interior nodes, for each substructure, is shown in 

Table 4.5. Since the interface degrees-of-freedom are expressed in terms of physical 

coordinates, the number of constraint modes matches the number of interface degrees-of-

freedom. The 9-bay panel has a total of 3,771 free interface degrees-of-freedom, so a 

total of 3,771 constraint modes were be created.  

Table 4.5. Node and degree-of-freedom (Dof) number for each substructure.  

Substructure 
ID 

Boundary 
Node # 

Interior 
Node # 

Total Dof 

1 – 9  98 × 9 480 × 9 3,468 × 9 
10 350 1,094 8,664 
11 532 9,976 63,048 

4.3.3. Linear Problem 

While the “exact” response predicted by the full FEA model of the 9-bay panel 

would be recovered if all the fixed-interface modes and constraint modes were included, 

a compact reduced order model was sought. To this end, a reduced order model of the 

entire model was assembled using different combinations of fixed-interface modes for 

each substructure while keeping the entire set of constraint modes.  The final model 

selected led to a good matching of the modes and natural frequencies of the entire system 
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and the synthesized ones, which in turn ensures a good matching of the linear dynamic 

response. The difference between the synthesized and original modes was assessed in 

terms of the norm of the difference of these modes divided by the norm of the original 

mode. 

Only the 46 modes of the entire system within the [0,500]Hz frequency band that 

had a significant contribution to the linear dynamic response were included. Shown in 

Fig. 4.52 are the relative errors of the transverse component (i.e., dominant component) 

of the skin panel nodes for different numbers of bay and frame fixed-interface modes. 

Shown in Fig. 4.53 are the relative errors of the natural frequencies. Clearly, even the 

smallest model yielded a good prediction of the natural frequencies. However, this was 

not the case with the mode shapes, where a more clear effect can be seen from using 

different numbers of bay and frame fixed-interface modes. For example, the “10 Bay, 100 

Frame” model led to good agreement for a majority of the original modes. Increasing the 

number of bay or frame fixed-interface modes led to improvements in the other cases, but 

at a higher cost in the number of modes.  

With this in mind, it was desired to further assess the “10 Bay, 100 Frame” 

model by comparing its linear dynamic response with the one corresponding to the 

original modes of the full structure. To this end, the 9-bay panel was subjected to a 

uniform pressure on its top surface varying randomly in time as a white noise band-

limited process in the frequency range [0,500Hz] used to simulate an acoustic loading. 

The acoustic excitation consisted of an overall sound pressure level (OASPL) of 106dB. 

As in the dynamic validation of the monolithic ROM (see the previous section), a simple 

Rayleigh damping model was adopted with α=7.55/s and β=5.6E-6s. This selection led to 

damping ratios between 0.65% and 1% for all transverse modes in the excitation band. 

The power spectral density of the transverse displacement of the middle point of the 
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middle panel, for the original modes and the synthesized modes, is shown in Fig. 4.54. 

The matching of the dominant features of the dynamic response is excellent, which 

indicates the suitability of the “10 Bay, 100 Frame” model.  

 

Figure 4.52. Relative errors of the transverse (normal) component of the skin degrees-of-
freedom for different combinations of bay-frame fixed-interface mode numbers. 

 

Figure 4.53. Relative errors of the natural frequencies for different combinations of bay-
frame fixed-interface mode numbers. 
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Figure 4.54. Power spectral density of the transverse (T3) deflection at the middle point 
of bay 5. Craig-Bampton model and finite element (“Nastran Modes”), SPL =106dB. 

Notwithstanding the good prediction of the linear dynamics of the entire system 

by the “10 Bay, 100  Frame” model, the large number of fixed-interface frame modes and 

most importantly the large number of constraint modes deserve a closer examination. The 

use of a methodology to reduce the number of fixed-interface frame modes and constraint 

modes was explored next.  

In order to reduce the large number of fixed-interface frame modes two 

alternatives were explored. The first one consisted of assessing the effect of the mass of 

the frame-longeron substructure (substructure 11) on the natural frequencies of the 

original mode shapes of the entire structure. To this end, the mass of the frame in the 

Craig-Bampton computations was divided by different factors and the resulting natural 

frequencies in the band [0,500]Hz were compared. A small effect would suggest the 

possibility of statically condensing the fixed-interface frame modes. However, as seen in 

Fig. 4.55 the effect was not negligible.  
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Figure 4.55. First 90 natural frequencies for different scaling factors of the frame-
longeron mass matrix: 1, 0.5, 0.25, and 0.10.  

The frame-longeron substructure is formed by 4 equal longerons and frames. 

Therefore, one would expect to have families of modes with natural frequencies that are 

close to each other (e.g., one mode with motions localized to longeron 1 and another 

localized to longeron 2, and so on). This can be seen in Fig. 4.56, which is a plot of the 

first 200 natural frequencies of the fixed-interface modes of the frame-longeron 

substructure. The first 12 modes have frequencies in the [0,500]Hz band of excitation, so 

these modes were kept as they would be directly excited. Then, the frame deflections 

from the first 89 system modes (i.e., those with natural frequencies within the [0,500]Hz 

band) were obtained, the first 12 fixed-interface modes were extracted, and a POD 

analysis of the residual was performed. Shown in Figs. 4.57-4.58 are the relative errors of 

the transverse component of the skin degrees-of-freedom and of the natural frequencies 

for different numbers of POD modes. The difference between including 40 and 50 POD 

modes was found to be very small; therefore, the number of fixed-interface modes was 

reduced from 100 to 52 (40 POD modes plus the 12 in-band normal modes).  
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Figure 4.56. First 200 natural frequencies of the fixed-interface frame modes. 

 

Figure 4.57. Relative errors of the transverse (normal) component of the skin degrees-of-
freedom for different number of fixed-interface frame mode numbers. 

 

Figure 4.58. Relative errors of the natural frequencies for different number of fixed-
interface frame mode numbers. 
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Next, it was desired to use the full model reduction from Eqs. (4.11)-(4.15) to 

express the response of the interface in terms of a reduced order model. By expressing the 

response of the interface in terms of a reduced order model, a substantial reduction in the 

number of interface degrees-of-freedom was expected. Furthermore, in terms of physical 

coordinates, the constraint modes are sensitive to the level of mesh refinement; in 

addition, mesh refinement would also affect the number of interface degrees-of-freedom 

and consequently the number of constraint modes. On the other hand, the modes of a 

reduced order model are associated to a natural frequency, which for the low frequency 

modes is not very sensitive to mesh refinement assuming that the original mesh size is 

appropriate. 

Shown in Fig. 4.59 are the first 80 natural frequencies of the constraint modes 

computed from Eq. (4.12). There are 36 constraint modes in the frequency band 

[0,500]Hz that must be included since they could be directly excited by the dynamic 

loading. Shown in Figs. 4.60-4.61 are the relative errors of the transverse component of 

the skin panel degrees-of-freedom and of the natural frequencies for different numbers of 

constraint modes. Approximately 150 constraint modes were needed to match the results 

obtained with the full set of constraint modes and there were 114 constraint modes 

outside of the [0,500]Hz frequency band. Therefore, the POD approach used to reduce 

the number of fixed-interface constraint modes was used. In a similar way, the 36 in-band 

constraint modes were extracted from the displacement of the boundary degrees-of-

freedom of the first 89 global modes. Then, a POD analysis of the residual was 

performed. Shown in Figs. 4.62-4.63 are the relative errors of the transverse component 

of the skin degrees-of-freedom and of the natural frequencies for different numbers of 

POD modes. In order to recover the results obtained with the full set of constraint modes, 

54 POD modes were required; a total of 90 constraint modes were selected.  
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Figure 4.59. First 80 natural frequencies of the constraint modes from Eq. (4.12). 

 

Figure 4.60. Relative errors of the transverse (normal) component of the skin degrees-of-
freedom for different number of constraint modes. 

 

Figure 4.61. Relative errors of the natural frequencies for different number of constraint 
modes. 
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Figure 4.62. Relative errors of the transverse (normal) component of the skin degrees-of-
freedom for different number of POD constraint modes. 

 

Figure 4.63. Relative errors of the natural frequencies for different number of POD 
constraint modes. 
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challenge in the use of a Bottom-Up Approach which arises from the global aspects of the 

response of the 9-bay panel.  

 

Figure 4.64. Power spectral density of the transverse (T3) deflection at the middle point 
of bay 5. Modal transient response (89 linear modes of the entire 9-bay panel) and Craig-
Bampton model, SPL =106dB. 

4.3.4. Nonlinear Problem 

Shown in Figs. 4.65-4.69 are plots of the first five reduced constraint modes, 

computed from Eq. (4.12) and mapped back to physical coordinates by the transformation 

matrix T1 (see Eq. 4.8). Also shown, are the first five modes of the entire 9-bay panel. 

Interestingly, the first four reduced constraint modes are very similar to their counterparts 

of the entire structure. Clearly, the motion of the interface nodes drives the motion of the 

bays and of the frame-longeron substructure. This global motion illustrates the strong 

coupling that exists between the bays. This in turn is a positive aspect, since it means that 

it will be difficult for the motion to get localized in a particular bay, which could be a 

concern from a fatigue failure perspective. On the other hand, from the nonlinear reduced 

order model perspective, the strong coupling between the bays implies that the nonlinear 

stiffness coefficients of the constraint modes will have an effect on the response.  
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(a) 

 
(b) 

Figure 4.65. (a) First reduced constraint mode (f = 69.7Hz) and (b) first mode of the 
entire 9-bay panel (f = 68.2Hz). 

 
(a) 

 
(b) 

Figure 4.66. (a) Second reduced constraint mode (f = 106.4Hz) and (b) second mode of 
the entire 9-bay panel (f = 99.7Hz). 

 
(a) 

 
(b) 

Figure 4.67. (a) Third reduced constraint mode (f = 111.1Hz) and (b) third mode of the 
entire 9-bay panel (f = 103.3Hz). 
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(a) 

 
(b) 

Figure 4.68. (a) Fourth reduced constraint mode (f = 131.9Hz) and (b) fourth mode of the 
entire 9-bay panel (f = 116.5Hz). 

 
(a) 

 
(b) 

Figure 4.69. (a) Fifth reduced constraint mode (f = 146.7Hz) and (b) fifth mode of the 
entire 9-bay panel (f = 120Hz). 

Another challenge in the implementation of a Bottom-Up approach is in the 

nonlinear interaction between substructures, which needs to be built in the basis. Shown 

in Fig. 4.70 are the translational displacement magnitude of the entire model and the T2 

component of the middle bay obtained from the nonlinear static analysis due to a uniform 

pressure loading of 0.6psi. Clearly, the middle bay is loaded by the top and bottom bays 

(bays 8 and 2, respectively).  
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Figure 4.70. Contour plots showing the translational displacement magnitude of the entire 
9-bay panel and the in-plane (T2) displacement at bay 5. Nonlinear static displacement 
due to a uniform pressure of 0.6psi. 
 
 

The preloading of a substructure by its neighbors can be seen even if the 

transverse response is mostly localized to one substructure. An example of this can be 

seen in the localized response shown in Fig. 4.71, which corresponds to a “snapshot” 

obtained from the nonlinear dynamic response of the 144dB excitation level described 

earlier in this chapter. This is an interesting case because the response is mostly localized 

to bay 5; however, the in-plane loading of bays 2 and 8 in the T2 direction can be seen 

clearly.  
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Figure 4.71. Contour plots showing the translational displacement magnitude of the entire 
9-bay panel and the in-plane (T2) displacement of the skin panel. “Snapshot” from the 
nonlinear dynamic response at the 144dB excitation level.  

As shown in Fig. 4.72, the preloading of a bay induced by the nonlinear 

interaction between bays not only leads to significant differences with respect to the 

original dual construction, but also with respect to duals from different bays. The 

preloaded duals shown in Fig. 4.72 were obtained by imposing boundary displacements 

in all directions, in addition to loading of the interior degrees-of-freedom with forces 

proportional to the first mode of the clamped-clamped bay. The boundary displacement 

was chosen as the nonlinear static response obtained from a load proportional to the first 

linear mode of the entire system (i.e., the loading used for the computation of the 1-1 dual 

of the monolithic ROM). Furthermore, 6 different loading factors )(m
iα were used, half 

positive and half negative, and leading to peak deflections ranging from 0.9 to 

approximately 1.5 skin panel thicknesses. The loading of the interior degrees-of-freedom 
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,with forces proportional to the first modes of the clamped-clamped bay, consisted of 12 

different loading factors )(m
iα , half positive and half negative, which led to overall peak 

transverse deflections ranging from 1.5 to approximately 2.2 skin panel thicknesses. 

Finally, the contribution from the reduced constraint modes in the representation of the 

interface displacement was subtracted, and the residuals of the 12×3 deflections per bay, 

after projection on the 10 linear fixed-interface modes identified above, were analyzed by 

POD.  

 

Figure 4.72. In-plane components of the 1-1 dual computed with and without preloading 
of the interface.  

The previous discussion highlights the importance of extending the dual modes 

concept to include preloading of a substructure by its neighbors. The global features of 

the response of the 9-bay panel are dominant over the localized characteristics, which 

was seen in that the modes from the monolithic ROM were a more compact basis than the 

substructure modes from the previous section. Similarly, the introduction of the 

preloaded duals by themselves did not lead to a satisfactory reduction of the 

representation error as compared to the monolithic ROM.   
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The physical challenges observed here indicate that the representation of the 

global response from a Bottom-Up perspective is not more efficient than using the 

monolithic ROM. These findings also indicate that a key aspect for the multi-scale 

modeling of the 9-bay panel is in the representation of its global response. In this light, 

future work should explore the possibility of following a Top-Down multi-scale 

approach. In this case, the global response would be approximated (macro-scale) and 

then, this information would be used to compute the response of a particular bay (meso-

scale).  
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CHAPTER 5                                                                                                      

REDUCED ORDER MODELING FOR THE NONLINEAR GEOMETRIC 

RESPONSE OF PANELS WITH GEOMETRIC DISCONTINUITIES  

5.1. Introduction 

The purpose of this chapter is to assess the ROM capabilities for problems in the 

micro-scale. As mentioned in Chapter 1.3, problems in the micro-scale lead to 

localizations of the stress field. The source of these localizations may arise from cracks, 

debondings, fasteners, shock impingement points, etc. The main question to be addressed 

here is: Can a displacement-based ROM capture a localized stress distribution? In 

addition, the following phenomenological will be the focus of this chapter: 

1) Is the displacement field affected by the local defect?  

2) Does the defect need to be accounted for in the displacement? 

3) Can a local enrichment of the stress be developed? 

5.2. Models for Validation: Notched and Virgin Panel Models 

   A beam-like panel was considered here with and without a stress “hot spot”, 

with the properties of the beam provided in Table 5.1. The panel was assumed to exhibit 

clamped-clamped boundary conditions and to be subjected to a uniform pressure of 

varying magnitude. 

   A rounded notch of length equal to one-fourth of the beam thickness was 

placed at 30% of the length of the beam (henceforth referred to as the notched beam) and 

along its entire width as shown in Figs. 5.1 and 5.2. Clearly, plane stress conditions 

cannot be assumed to exist on the x-z plane since it is not a thin membrane. On the other 

hand, plane strain conditions do not exist since this is not a long body problem. 

Therefore, the structure was discretized throughout its entire domain with 8-node brick 

elements (CHEXA in NX/Nastran), and 14 such elements were used along the width of 
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the beam. Along the length, the notched beam was divided in different parts, as shown in 

Fig. 5.1, to capture the local effects of the notch without excessive meshing away from 

that zone. Away from the notch (parts (a) and (c) in Fig 5.1), 4 elements were used 

through the thickness of the beam and a uniform division along the length was performed 

with 20 elements for part (a) and 47 elements for part (c). The finer meshing around the 

notch (part (b) in Fig 5.1) is shown in Fig. 5.2(a). Note further from this figure that the 

notch is rounded to avoid any plasticity in its vicinity, which is not considered in this first 

effort. The purpose of this work was to validate the reduced order modeling strategy, 

therefore, a very fine mesh was not used in order to accelerate the finite element 

computations. 

 

Figure 5.1. Notched beam model: Part (b) shows the zone near the notch with a finer 
mesh than parts (a) and (c) which are away from the notch. 

   A virgin beam model was also considered and, for ease of comparison, its 

meshing was selected to be identical to the one of the notched beam but with the notch 

filled with CHEXA elements, see Fig. 5.2(b), and with the same material properties, see 

Table 5.1. 
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Table 5.1.   Clamped-Clamped Beam Properties 

Beam Length 0.2286 m 
Cross-section Width 0.0127 m 

Cross-section Thickness 7.88 10-4 m 

Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 
Shear Modulus 27,730 MPa 

 
(a) 

 
(b) 

Figure 5.2. Geometry and finite element mesh near the notch region: (a) notched beam 
and (b) virgin beam. Where L=0.2286m  and h=7.88x10-4m. 

5.3. Reduced Order Basis: Notched and Virgin Panels 

  It was first of interest to compare the basis functions of the reduced order 

models, i.e., the transverse and duals modes, of the virgin and notched beams to assess 

the effects, local and/or global, of the notch. 

   The transverse linear modes were first investigated and were obtained, for the 

two beams, from a normal modes solution in NX/Nastran (SOL 103). The natural 

h = 0.788mm

a = 1/4h

xnotch = 0.3L
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frequencies of the first 4 symmetric modes of the two beams are shown in Table 5.2. As 

expected, given the small size of the notch, its effect on the first few natural frequencies 

is very small.  

Table 5.2.   Natural frequencies along with relative error between notched and virgin 
beams. 

Mode No. 
Virgin 
Beam 
(Hz) 

Notched 
Beam 
(Hz) 

Relative 
Difference 

(%) 
1 81.561 81.551 0.010 
3 442.075 441.900 0.040 
6 1098.527 1097.261 0.110 
10 2061.725 2061.693 0.001 

  The transverse and in-plane (along the length of the beam) components of the 

first mode shape along one of the top edges of the beams (y=0, z=h) are shown in Figs. 

5.3-5.4. The first observation to be drawn is that the notch does not affect noticeably the 

transverse displacements, but appears to induce a sharp peak in its in-plane counterpart. 

However, this peak is an artifact of the geometry, i.e., the notched beam data presented 

includes the displacement at the nodes along the flat edge of the beam but also those 

along the faces of the notch. Since these points are much closer to the neutral axis of the 

beam, their in-plane displacements are expected to be smaller as seen in Fig. 5.5. Plotting 

the same nodal displacements for the virgin beam, see Figs. 5.6-5.7, confirms this 

explanation of the peak.    

  The linear modes of the structure only represent one part of the basis, modeling 

primarily the transverse displacements, while the dual modes (see [9,12,14]) capture the 

nonlinearly induced in-plane motions. In this light, it was also desired to assess the 

effects of the notch on these dual modes. Thus, the 4 dual modes corresponding to the 4 

linear modes were created, for both notched and virgin beams. 

  Shown in Figs. 5.8-5.9 are the transverse and in-plane components of the first 

(dominant) dual. Note that the notch is most present in the transverse component, see 
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Fig. 5.8, of the dual mode which is quite different for the notched and virgin beams. In 

particular, note for the former the presence of a large, broad (as measured by the width of 

the notch) peak at the location of the notch. On the contrary, the in-plane components of 

this dual mode are almost unaffected by the notch, see Fig. 5.9. The most noticeable 

difference in the in-plane displacement is a jump occurring at the location of the notch, as 

seen in Fig. 5.10. Similar observations were drawn for the other 3 dual modes. 

 

Figure 5.3. Transverse component of the first linear mode along one of the top edges of 
the beam. 

 

Figure 5.4. In-plane component of the first linear mode along one of the top edges of the 
beam. 
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Figure 5.5. Zoomed-in view of the in-plane displacements near the location of the notch. 

 

Figure 5.6. In-plane component of the first linear mode, curves correspond to 
displacements at the same nodes.  
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Figure 5.7. Zoomed-in view of the in-plane component, curves correspond to 
displacements at the same nodes. 

 

Figure 5.8. Transverse component of the first dual mode along one of the top edges of the 
beam. 
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Figure 5.9. In-plane component of the first dual mode along one of the top edges of the 
beam. 

 

Figure 5.10. Zoomed-in view of the in-plane displacements near the location of the notch. 

Using the 4 linear and 4 dual modes analyzed above, reduced order models were 

built for both notched and virgin beams with the coefficients estimated from the stiffness 

evaluation procedure of [28] as modified in [10-12]. 
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5.4. Static Validation: Displacement and Stress Fields 

   To assess the adequacy of the reduced order models obtained and assess the 

effects of the notch, the beams were loaded with a uniform pressure acting on the bottom 

surface. Two different pressures were chosen, 2.6kPa and 17kPa, which led to peak 

transverse displacements of approximately 2 and 4 beam thicknesses, well within the 

nonlinear range. The static responses were computed with the reduced order model as 

well as by a nonlinear NX/Nastran analysis (SOL 106). Shown in Figs. 5.11-5.14 is a 

comparison of the predicted transverse and in-plane displacements at the beam’s upper 

and lower edges. Clearly, the matching is excellent for both transverse and in-plane 

displacements, even in the direct vicinity of the notch (see Fig. 5.15). In Figs. 5.15-5.16, 

the response of the virgin beam was plotted at the same node locations as the response of 

the notched beam. Interestingly, the reduced order model of the virgin beam does an 

excellent job in capturing the in-plane displacement field in the notch region.  

  Figures 5.17-5.20 show the static response of the beam to pressures equal to      

-2.6kPa and -17kPa, applied on the bottom surface of the beam, and leading to peak 

transverse displacements of -2 and -4 beam thicknesses. Clearly, the matching is 

excellent for both cases, and once more the reduced order model of the virgin beam does 

an excellent job in capturing the in-plane displacement field in the notch region. 
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Figure 5.11. Transverse displacements at the top (y=0, z=h) edge of the beam induced by 
a uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”).  

 

Figure 5.12. Transverse displacements at the top (y=0, z=h) edge of the beam induced by 
a uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”).  
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Figure 5.13. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the 
beam induced by a uniform pressure of 2.6kPa on its bottom surface. Reduced order 
models (“ROM 4T4D”), nonlinear static FEA (“NX/Nastran NL”). 

 

Figure 5.14. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the 
beam induced by a uniform pressure of 17kPa on its bottom surface. Reduced order 
models (“ROM 4T4D”), nonlinear static FEA (“NX/Nastran NL”). 
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Figure 5.15. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) 
due to a uniform pressure of 2.6kPa. Reduced order models (“ROM 4T4D”), nonlinear 
static FEA (“NX/Nastran NL”). 

 

Figure 5.16. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) 
due to a uniform pressure of 17kPa. Reduced order models (“ROM 4T4D”), nonlinear 
static FEA (“NX/Nastran NL”). 
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Figure 5.17. Transverse disp. at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of -2.6kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 

 

Figure 5.18. Transverse disp. at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of -17kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 
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Figure 5.19. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the 
beam induced by a uniform pressure of -2.6kPa on its bottom surface. Reduced order 
models (“ROM 4T4D”), nonlinear static FEA (“NX/Nastran NL”). 

 

Figure 5.20. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the 
beam induced by a uniform pressure of -17kPa on its bottom surface. Reduced order 
models (“ROM 4T4D”), nonlinear static FEA (“NX/Nastran NL”). 

 

0 0.05 0.1 0.15 0.2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Beam Span (m)

In
-p

la
ne

 (T
1)

 D
is

pl
ac

em
en

t (
B

ea
m

 T
h)

 

 
NX/Nastran NL Top
ROM 4T4D Top (Notched Beam)
ROM 4T4D Top (Virgin Beam)
NX/Nastran NL Bottom
ROM 4T4D Bottom (Notched Beam)
ROM 4T4D Bottom (Virgin Beam)

0 0.05 0.1 0.15 0.2
-0.04

-0.02

0

0.02

0.04

0.06

Beam Span (m)

In
-p

la
ne

 (T
1)

 D
is

pl
ac

em
en

t (
B

ea
m

 T
h)

 

 
NX/Nastran NL Top
ROM 4T4D Top (Notched Beam)
ROM 4T4D Top (Virgin Beam)
NX/Nastran NL Bottom
ROM 4T4D Bottom (Notched Beam)
ROM 4T4D Bottom (Virgin Beam)



 

 106 

 

 

Figure 5.21. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) 
due to a uniform pressure of (a) -2.6kPa and (b) -17kPa. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 
 

 

Figure 5.22. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) 
due to a uniform pressure of (a) -2.6kPa and (b) -17kPa. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 
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Table 5.3. Summary of prediction errors, notched beam and virgin beam ROMs. 

Peak T3 Disp 
(Beam 

Thicknesses) 

Prediction Error 
Transverse (T3) 
Component (%) 

Prediction Error 
Transverse (T1) 
Component (%) 

Prediction Error 
Transverse (T2) 
Component (%) 

 Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

2 0.2 0.4 1 1.4 2.4 3.4 
4 0.5 0.9 3.9 3.7 5.9 7.4 
-2 0.3 0.3 1.4 1.4 3.4 3 
-4 1 0.6 3.8 3.9 7.4 7.1 

Shown in Table 5.3 is a summary of the prediction errors for the three 

displacement components. The prediction errors were computed from Eq. 4.1. Results are 

shown for the ROMs of the notched and virgin beam. Clearly, the linear modes chosen to 

represent the transverse displacements, along with the modeling of the in-plane 

displacements by the duals, result in a very good matching of the transverse component 

with respect to NX/Nastran. 

The previous results have demonstrated that the reduced order model of the 

notched beam is able to capture accurately the displacement field of this beam, thereby 

extending the existing validation cases of [9, 12 and 21-24]. Furthermore, it has been 

observed, not too unexpectedly, that the displacement fields of the notched and virgin 

beams are indeed very close to each other, suggesting that the latter could be used for the 

prediction of the response of the former. Before any such connection can be established, 

however, it is necessary to assess the capability of the notched beam reduced order model 

to capture the stress distribution of this beam. 

   To this end, shown in Figs 5.23-5.26 are the dominant stresses xxS along the 

top edge of the beam (y=0, z=h), as computed by the reduced order model of the notched 

beam, see Eq. (2.35), and by NX/Nastran nonlinear for all loading cases analyzed above. 

Clearly, the agreement is very good to excellent, even in the notch near field, as seen 

from the results in Tables 5.3-5.4. It is thus concluded from these validation cases that the 
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nonlinear geometric reduced order modeling technique developed is also applicable to 

notched panels for the prediction of both their displacement and stress fields. 

 
Figure 5.23. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform 
pressure of 2.6kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress 
Enrichment)”, nonlinear static FEA (“NX/Nastran”). 

 
Figure 5.24. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform 
pressure of 17kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress 
Enrichment)”, nonlinear static FEA (“NX/Nastran”). 
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Figure 5.25. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform 
pressure of -2.6kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress 
Enrichment)”, nonlinear static FEA (“NX/Nastran”).  

 

Figure 5.26. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform 
pressure of -17kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress 
Enrichment)”, nonlinear static FEA (“NX/Nastran”). 

5.5. Dynamic Displacement and Stress Fields 

Lastly, a dynamic transverse loading was added and the response computed in 
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randomly in time as a white noise band-limited process in the frequency range 

[0,1042Hz] to simulate an acoustic loading.  The acoustic excitation consisted of an 

overall sound pressure level (OASPL) of 147dB. Furthermore, to permit a close 

comparison between the NX/Nastran and ROM results, a simple Rayleigh damping 

model was adopted, i.e. for which the damping matrix is 𝐷 = 𝛼𝑀 + 𝛽𝐾 with α=12.838/s 

and β=2.061E-6s. This selection led to damping ratios between 0.5% and 1.3% for all 

four transverse modes in the excitation band. 

The power spectra of the transverse displacement at the middle of the beam and 

of the in-plane displacement at the beam quarter point, both at the upper edge (i.e., y=0, 

z=h) are shown in Figs. 5.27-5.29. Clearly, based on the matching of the power spectral 

density of the NX/Nastran results, the ROM of the notched beam and of the virgin beam 

match very well the dynamics of the beam. Interestingly, the matching of the power 

spectrum of the in-plane displacement along the T1 direction at the notch tip is very good 

as well, even for the ROM of the virgin beam.  

The power spectral density of the dominant Sxx element stresses, at different 

locations along the beam are shown in Figs. 5.30-5.32. Away from the notch, the power 

spectrum of both ROMs match NX/Nastran. Figure 5.32 shows clearly the amplification 

of the stress field at the notch. The power spectrum corresponding to the  ROM of the 

notched beam matches its NX/Nastran counterpart very well. 
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Figure 5.27. Power spectral density of the transverse displacement at the beam middle 
point, x=1/2L, y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and 
FEA (“NX/Nastran”). 

 

Figure 5.28. Power spectral density of the in-plane displacement at the notch tip (OASPL 
= 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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Figure 5.29. Power spectral density of the in-plane displacement at the beam quarter 
point, x=1/4L, y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and 
FEA (“NX/Nastran”). 

 

Figure 5.30. Power spectral density of the Sxx element stress near the middle of the beam 
at y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 
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Figure 5.31. Power spectral density of the Sxx element stress near the support of the beam 
at y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 

 

Figure 5.32. Power spectral density of the Sxx element stress near the notch at y=0, z=h 
(OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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would need to be updated as the crack propagates. For such analyses, it would be highly 

desirable to rely on a reference geometry, most simply the virgin beam, and enrich the 

solution by an extra component accounting for the existence and geometry of the crack. 

   The loading considered in the present validation cases, and representative of 

the applied loads on panels, leads primarily to bending and stretching (from the nonlinear 

effects) and thus a mode I fracture mode is dominant. Accordingly, it is proposed here to 

add to the virgin beam stress distribution, induced by the pressure loading, a term that 

accounts for the presence of the crack. Following a stress intensity factor perspective, it is 

suggested that this term, referred to as an enrichment, be computed as the increment of 

stress induced by the crack, for a loading corresponding to the in-plane stress distribution 

of the virgin beam in the vicinity of the crack. Further, this enrichment term will be 

computed in a linear static analysis. Effectively, this approach replaces the stress 

distribution of the virgin beam in the vicinity of the crack by a stress distribution of the 

cracked beam that smoothly connects to the virgin far-field behavior. 

  Two separate versions of this strategy were considered and assessed on the 

notched beam from previous sections. In the first one, the loading applied to the notched 

beam is uniform through the thickness with magnitude equal to the stress estimated from 

the virgin reduced order model on the top of the beam at 2 thicknesses away from the 

notch. Note that the stress distribution on the notched beam was computed from the finite 

element model. However, only one such computation is necessary, i.e., for a unit in-plane 

load, and then is scaled according to the stress predicted on the virgin beam. This 

enrichment is equivalent to having a constant stress intensity factor, equal to 

)nominal((max)
xxxx SS , where )nominal(

xxS is equal to the virgin beam stress. 

   The large deformations considered here lead to a coupling between bending 

and membrane stretching that modifies the configuration of the stresses for different 
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loading levels. Therefore, the stress intensity factor is also expected to change as the 

loading level is modified. In this light, the second stress enrichment considered was 

computed by applying a pressure varying through the thickness and equal to the xxS  

stress distribution at a location 2 beam thicknesses from the center of the notch. This 

pressure distribution was applied in a linear static analysis to one of the ends of the beam, 

while keeping the other end fixed. As with the previous enrichment, this analysis was 

performed on both notched and virgin beams. Then, the resulting stress from the notched 

beam was subtracted by the stress field from the virgin beam to obtain the localized stress 

at the location of the notch. The disadvantage of this method is that a linear static analysis 

has to be performed every time the loading changes. 

5.7. Validation of Stress Enrichment: Static Loading 

  Shown in Table 5.4 are the peak stresses at the notch, as computed by the 

reduced order model of the virgin beam with the two enrichments previously described. 

Clearly, the agreement is very good for the largest stresses (Case 1 and Case 2). Note that 

the stresses of the NX/Nastran analysis for the virgin beam were enriched as well to 

assess the accuracy of the enrichment procedure independently of the reduced order 

model. The enriched NX/Nastran stress results agree very well with the corresponding 

predictions on the notched beam.  
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Table 5.4.    Peak in-plane element stresses in the notch region for the four loading cases 
studied: 2.6kPa (Case 1), 17kPa (Case 2), -2.6kPa (Case 3), -17kPa (Case 4). Relative 
errors are with respect to the Nastran results of the notched beam. 

Computation Case 1  Case 2  Case 3  Case 4  

 MPa Erel 
(%) MPa Erel 

(%) MPa Erel 
(%) MPa Erel 

(%) 
Nastran Notched 

Beam 32.3  105.7  6.4  55.4  

Nastran Virgin Beam 
+ Enrichment #1 32.2 0.3 107 1.2 7.2 12.5 58.2 5 

Nastran Virgin Beam 
+ Enrichment #2 32.3 0 107.2 1.4 7.1 11 58 4.6 

ROM Notched Beam 32.7 1.2 105.8 0.1 7.3 14 65.2 17 

ROM Virgin + 
Enrichment #1 32.7 1.2 105.6 0.1 9.3 45 67.7 22 

ROM Virgin + 
Enrichment #2 32.8 1.5 105.9 0.2 9.2 44 67.7 22 

 
5.8. Validation of Stress Enrichment: Dynamic Loading 

For completeness it was desired to assess the effect of the enrichments in a 

dynamic analysis. The dynamic loading described in section 5.5 was used. The power 

spectral density of the Sxx element stresses, at different locations along the beam are 

shown in Figs. 5.33-5.36. Interestingly, both enrichments lead to almost identical stress 

results. As seen in Fig. 5.33, the addition of the two enrichment schemes (described in 

section 5.5) to the ROM of the virgin beam, resulted in a good matching of NX/Nastran 

near the notch. This clearly is very pleasing, especially after looking at the results shown 

in Fig. 5.32.  
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Figure 5.33. Power spectral density of the Sxx element stress near the notch tip at y=0, 
z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 

 

Figure 5.34. Power spectral density of the Sxx element stress near the middle of the beam 
at y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 
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Figure 5.35. Power spectral density of the Sxx element stress at 2 beam thicknesses from 
the notch tip and y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) 
and FEA (“NX/Nastran”). 

 

Figure 5.36. Power spectral density of the Sxx element stress near the support of the beam 
at y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 
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CHAPTER 6                                                                                            

ALGORITHMIC IMPROVEMENTS  

6.1. Introduction 

As discussed previously, due the large number of modes that may be needed to 

capture the response of a complex structure computational challenges may arise, not only 

in the construction process but also in the solution of the ROM equations. Challenges in 

the construction were addressed in Chapter 3, more specifically in the identification of 

the nonlinear stiffness coefficients. With respect to the solution of the ROM equations, 

two approaches will be presented in the present chapter to reduce the computational 

effort associated with their solution.   

6.2. Benefits of “Cleaning” the Model in CPU Time 

One of the major computational challenges associated with the solution of the 

ROM equations is the evaluation of the nonlinear restoring force 
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 . (6.1)  

As mentioned in Chapter 2, the number of nonlinear stiffness coefficients for a 

ROM with M modes is approximately equal to 𝑀4 6⁄ . Therefore, a basis with 60 modes 

would lead to approximately 2 million coefficients. Clearly, the computational effort 

involved in computing the expression in Eq. (6.1) can be very large if one considers that 

this has to be performed for every iteration in the nonlinear solution and every time step 

to be analyzed.  

The reduced order modeling procedure relies on a finite element model of the 

structure. In the present situation of “large” deflections, the von Karman strain definition 

is generally adopted.  
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(6.2)  

The basic assumption of the von Karman strain definition is that the force 

induced transverse motions in the weak bending direction are much larger than the in-

plane displacement induced by the nonlinear coupling with the transverse displacement. 

While the low-frequency linear modes included in the reduced order model have in 

general dominant transverse components (i.e., in the direction normal to the panel), the 

dual modes have dominant in-plane features.  

In this light, since the nonlinear stiffness coefficients are computed from the 

finite element model of the structure, the coefficients related to the product of two or 

three dual modes are expected to have a negligible effect in the solution of the 

generalized coordinates from the ROM equations of motion. This is expected to be the 

case as long as the strain-displacement relations from Eq. (6.2) are used in the finite 

element package used to compute the stiffness coefficients. With this in mind, the 

following stiffness coefficients could be ignored in the evaluation of Eq. (6.1): 𝐾𝑡𝑖𝑖
(2), 

𝐾𝑖𝑡𝑖
(2), 𝐾𝑖𝑖𝑖

(2), 𝐾𝑡𝑡𝑖𝑖
(3), 𝐾𝑡𝑖𝑖𝑖

(3), 𝐾𝑖𝑡𝑡𝑖
(3), 𝐾𝑖𝑡𝑖𝑖

(3), and 𝐾𝑖𝑖𝑖𝑖
(3), where, the index t corresponds to a linear 

mode, the index i corresponds to a dual mode. Furthermore, due to the symmetry of the 

coefficients, 𝐾𝑡𝑖𝑖
(2) and 𝐾𝑡𝑖𝑖

(2) have to be eliminated because 𝐾𝑡𝑖𝑖 and 𝐾𝑡𝑡𝑖𝑖 were removed. In 

order to ensure convergence of the solution, the cubic coefficients 𝐾𝑡𝑡𝑡𝑖
(3)  and 𝐾𝑖𝑡𝑡𝑡

(3)  were 

ignored in the evaluation of Eq. (6.1).  
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This approach was validated on the nonlinear static and dynamic solutions from 

Chapter 4. First, the 82-mode model from the nonlinear static validation was investigated. 

Shown in Table 6.1 are the prediction errors for the full and the “cleaned” models along 

with the computation times needed for the solution of the problem. 

Table 6.1. Comparison of relative errors and CPU time between “Full Model” and 
“Cleaned Model”. 

 T3 In-plane 
Mag. 

T2 T1 CPU Time 

Full Model 1.2% 4.3% 3.3% 36% 9 minutes 
Cleaned 
Model 

1.4% 4.5% 3.4% 37.7% 1 minute 

The correlation of the cleaned solution with the full one is very good and the 

reduction in the CPU time is noticeable.  

The validation on the dynamic problem with an acoustic excitation of 144dB 

yielded excellent results as well. Shown in Figs. 6.1-6.6 is a comparison of the transverse 

and in-plane response at bays 1, 2, and 5 of the 9-bay panel from Chapter 4. Clearly, the 

correlation between the “full” and “cleaned” solutions is excellent. In addition, the CPU 

time for the “cleaned” solutions was 6.5 times lower than the one for the “full” solution.  
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Figure 6.1. Power spectral density of the transverse (T3) displacement at the middle point 
of bay 5. Reduced order models “Full” and “Cleaned”, SPL =144dB. 
 

 

Figure 6.2. Power spectral density of the in-plane (T1) displacement at the middle point 
of bay 5. Reduced order models “Full” and “Cleaned”, SPL =144dB. 
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Figure 6.3. Power spectral density of the transverse (T3) displacement at the middle point 
of bay 2. Reduced order models “Full” and “Cleaned”, SPL =144dB. 

 

 

Figure 6.4. Power spectral density of the in-plane (T2) displacement at the middle point 
of bay 2. Reduced order models “Full” and “Cleaned”, SPL =144dB. 
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Figure 6.5. Power spectral density of the transverse (T3) displacement at the middle point 
of bay 1. Reduced order models “Full” and “Cleaned”, SPL =144dB. 

 

 

Figure 6.6. Power spectral density of the in-plane (T1) displacement at the middle point 
of bay 1. Reduced order models “Full” and “Cleaned”, SPL =144dB. 
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in-plane displacement induced by large loading conditions through the nonlinear coupling 
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with the transverse deflection. For simple structures, such as a clamped-clamped beam 

under pure transverse loading conditions, they are not directly excited by the loading, but 

respond quasi-statically [4, 14-15]. With this in mind, the inertia of the duals could be 

neglected and the generalized coordinates of the dual modes solved for explicitly and 

substituted into the equations of the linear modes. This in turn would lead to a reduction 

of the number of equations to be solved and possibly of the nonlinear iterations needed 

for the solution to converge at every time step.  

In this light, the ROM equations can be split into the equations of the linear 

modes and those of the dual modes. Assuming that the model consists of one linear mode 

and one dual, using the “cleaning” scheme from the previous section, and assuming the 

dual modes to act quasi-statically, the resulting equations are as follows 

 

itittiii

ttttttitttittttttttttttt

FqKqK

FqKqqKqKqKqCqM

=+

=+++++
2

32
 (6.3)  

where, the index t corresponds to a linear mode, the index i corresponds to a dual mode, 

and the forces Ft and Fi are time dependent. Then, solving for the generalized coordinate 

of the dual mode, qi , from the second equation, and substituting it into the equation of the 

linear mode yields 

 ( ) tttttttittiiitttittttttttttttt FqKqKFKqKqKqKqCqM =+−++++ − 3212 . (6.4)  

Finally, rearranging terms the following expression is obtained 

 ( )
( ) ttittiittitttt

tttttiiittitttttttt

FqKKKK

qKqFKKKqCqM

=−+

+++++
−

−

31

21

                                                    


. (6.5)  

For the 9-bay panel Fi is not equal to zero, so it leads to a parametric type 

excitation. In this case, the computational effort is increased since the inverse of 
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iiittitt FKKK 1−+  would have to be computed for every time step. Accordingly, this 

approach was not adopted.  
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CHAPTER 7                                                                                                     

SUMMARY     

The focus of this investigation has been on the expansion of the current reduced 

order modeling techniques of geometrically nonlinear problems to problems in the micro-

scale and macro-scale.  

First, a background on the derivation of the ROM equations of motion was given. 

In addition, the identification of the ROM parameters and the selection of the basis 

needed to represent the displacement field of the structure were discussed.  

Then, two challenges associated with the analysis of complex structural models 

were identified: the identification of the ROM stiffness coefficients and the selection of 

the basis.  Two key modifications of the existing approaches were described: 

(1) A  novel identification strategy of the reduced order model parameters was derived 

which is based on the use of the tangent stiffness matrix and necessitates a 

computational effort only proportional to 2M , where M is the number of basis 

functions, as opposed to 3M  in the current formulations. 

(2) The linear and dual mode basis selection strategy was extended to include 

eigenvectors of the tangent stiffness matrix at key static deformations.  

The above novel developments were successfully validated on the nonlinear 

static and dynamic responses of a 9-bay panel structure modeled with 96,156 degrees of 

freedom within Nastran. In addition to the conventional ROM approach, a multi-scale 

analysis was explored. This approach was useful in gaining more understanding of the 

physics of the 9-bay panel considered in this section. 

Furthermore, a first assessment of the predictive capabilities of nonlinear reduced 

order models for notched panels was carried out. An aluminum clamped-clamped beam 

with a notch placed at 30% of its length and of depth equal to a quarter of the thickness 
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was considered as a typical panel. As expected, the notch was found to have a negligible 

effect on the first few natural frequencies of the beam, as compared to the virgin beam, 

but also on the corresponding mode shapes. In addition, only small notch-related effects 

could be detected on the in-plane component of the dual modes, which are basis functions 

constructed to capture the nonlinear transverse in-plane coupling occurring in large 

deformations. However, a large, rather broad peak was observed in the smaller transverse 

component of the dual modes of the notched beam which is absent on the corresponding 

plot for the virgin beam. 

   A displacement field induced by a uniform pressure on the beam, large enough 

to induce nonlinearity, i.e. peak transverse displacements of the order of 2 and 4 

thicknesses, was also found to be very weakly dependent on the notch. Furthermore, this 

displacement field was shown to be well predicted by the reduced order models of both 

notched and virgin beams. Also, a dynamic validation was carried out and the matching 

of the power spectrum of the displacement at selected points was excellent. 

  In regards to the prediction of the stress field, it was found that the notched 

beam reduced order model was indeed able to capture accurately the stress distribution 

induced by the pressure loading in both static and dynamic loading cases.  

   Nevertheless, it was questioned whether a prediction based on the virgin beam 

reduced order model could also be used if appropriately “enriched” with the notched 

beam stress field in a superposition-like manner. Two enrichment options were assessed 

that rely on this stress field as obtained, in a linear finite element static analysis, from a 

notched beam subjected to the stress state induced on the virgin beam near the notch 

location. This methodology led to good to excellent predictions of the stress field near the 

notch for both static and dynamic loading cases.  
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The last chapter of this work dealt with the assessment of a series of algorithmic 

improvements aimed at further reducing the CPU time of the solution of the ROM 

equations of motion. First, it was seen that by taking advantage of the von Karman strain 

assumption used for the beam and shell elements in NX/Nastran, the computational effort 

in the evaluation of the nonlinear restoring force could be reduced. This in turn led to 

substantial reductions in the computational time, with execution times which were up to 9 

times faster than before. Also, given that the dual modes are excited quasi-statically, a 

static condensation of the duals modes was proposed. It was found that the force in the 

in-plane direction appeared in the coefficient of the linear equations leading to a type of 

parametric excitation. This in turn increased the computational effort in problems where 

the in-plane force is not equal to zero. 
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ABSTRACT  
   

The focus of this investigation is on the renewed assessment of nonlinear 

reduced order models (ROM) for the accurate prediction of the geometrically 

nonlinear response of a curved beam. In light of difficulties encountered in an 

earlier modeling effort, the various steps involved in the construction of the 

reduced order model are carefully reassessed. The selection of the basis functions 

is first addressed by comparison with the results of proper orthogonal 

decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. 

the transverse linear modes of the corresponding flat beam, are shown in fact to 

be very close to the POD eigenvectors of the normal displacements and thus 

retained in the present effort. A strong connection is similarly established between 

the POD eigenvectors of the tangential displacements and the dual modes which 

are accordingly selected to complement the normal basis functions. 

The identification of the parameters of the reduced order model is 

revisited next and it is observed that the standard approach for their identification 

does not capture well the occurrence of snap-throughs. On this basis, a revised 

approach is proposed which is assessed first on the static, symmetric response of 

the beam to a uniform load. A very good to excellent matching between full finite 

element and ROM predicted responses validates the new identification procedure 

and motivates its application to the dynamic response of the beam which exhibits 

both symmetric and antisymmetric motions. While not quite as accurate as in the 

static case, the reduced order model predictions match well their full Nastran 

counterparts and support the reduced order model development strategy. 
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Chapter 1 

INTRODUCTION 

Modal models have long been recognized as the computationally efficient 

analysis method of complex linear structural dynamic systems, yielding a large 

reduction in computational cost but also allowing a convenient coupling with 

other physics code, e.g. with aerodynamics/CFD codes for aeroelastic analyses. 

Further, these modal models are easily derived from a finite element model of the 

structure considered and thus can be obtained even for complex geometries and 

boundary conditions. However, a growing number of applications require the 

consideration of geometric nonlinearity owing to the large structural 

displacements. For example, panels of supersonic/hypersonic vehicles have often 

in the past been treated in this manner because of the large acoustic loading they 

are subjected to as well as possible thermal effects. Novel, very flexible air 

vehicles have provided another, more recent class of situations in which 

geometric nonlinearity must be included. 

For such problems, it would be very desirable to have the equivalent of the 

modal methods exhibiting: (i) high computational efficiency, (ii) an ease of 

coupling to other physics codes, and (iii) generality with respect to the structure 

considered and its boundary conditions. To this end, nonlinear reduced order 

modeling techniques have been proposed and validated in the last decade [1-13]. 

Although several variants exist, their construction share the same aspects. First, 

they involve a parametric form of the model, i.e. one in which the nonlinearity is 

only on the “stiffness” and includes linear, quadratic, and cubic terms of the 
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displacement field generalized coordinates (see chapter below). Second, they rely 

on an identification strategy of the parameters of the model, i.e. the linear, 

quadratic, and cubic stiffness coefficients, from a finite element model of the 

structure for a particular set of “modes” or basis functions. Differences between 

the existing methods center in particular on the way the linear and nonlinear 

stiffness coefficients are estimated from a finite element model and on the extent 

and specificity of the basis functions, i.e. modeling of only the displacements 

transverse to the structure or all of them. 

As may be expected, the first validations of these reduced order models 

focused on flat structures, beams and plates, and an excellent match between 

responses predicted by the reduced order models and their full finite element 

counterparts have been demonstrated. Curved structures, curved beam most 

notably, have also been investigated in the last few years and a very good match 

of reduced order model and full finite element results was obtained. Yet, the 

construction of the reduced order model was not as straightforward in this case as 

it had been in flat structures, instabilities of the model were sometime obtained. 

The issue of constructing stable and accurate nonlinear reduced order 

models for curved structures is revisited here and an extension of the 

displacement-based (STEP) identification procedure [14, 8] is first proposed. 

Then, its application to a curved beam model is demonstrated, and shown to lead 

to an excellent matching between reduced order model and full finite element 

predictions. 

 



Chapter 2 

PARAMETRIC FORMS OF NONLINEAR REDUCED ORDER MODELS 

The reduced order models considered here are representations of the 

response of elastic geometrically nonlinear structures in the form  

 
( ) ( ) ( )∑

=
ψ=

M

n

n
ini XtqtXu

1

)(,  , i = 1, 2, 3   (2.1) 

where ( tXui , )  denotes the displacement components at a point X of the structure 

and at time t. Further, ( )Xn
i

)(ψ  are specified, constant basis functions and  

are the time dependent generalized coordinates. 

( )tqn

A general derivation of linear modal models is classically carried out from 

linear (infinitesimal) elasticity and it is thus desired here to proceed similarly but 

with finite deformation elasticity to include the full nonlinear geometric effects. 

Then, the first issue to be addressed is in what configuration, deformed or 

undeformed, the governing equations ought to be written. In this regard, note that 

the basis functions ( )Xn
i

)(ψ  are expected to (a) be independent of time and (b) 

satisfy the boundary conditions (at least the geometric or Dirichlet ones). These 

two conditions are not compatible if the basis functions are expressed in the 

deformed configuration as the locations at which the boundaries are will vary with 

the level of deformations or implicitly with time. However, these conditions are 

compatible if one proceeds in the undeformed configuration and thus X in Eq. 

(2.1), will denote the coordinates of a point in the undeformed configuration. 
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Accordingly, the equations of motion of an infinitesimal element can be 

expressed as (e.g. see [15, 16], summation over repeated indices assumed) 

( ) iijkij
k

ubSF
X

&&0
0

0 ρ=ρ+
∂
∂  for 0Ω∈X   

(2.2) 

where S denotes the second Piola-Kirchhoff stress tensor, 0ρ is the density in the 

reference configuration, and 0b  is the vector of body forces, all of which are 

assumed to depend on the coordinates . Further, in Eq. (2.2), the deformation 

gradient tensor F is defined by its components  as 

iX

ijF

 

j

i
ij

j

i
ij X

u
X
x

F
∂
∂

+δ=
∂
∂

=  (2.3) 

where  denotes the Kronecker symbol and the displacement vector is uijδ  = x - X, 

x being the position vector in the deformed configuration. Finally,  denotes the 

domain occupied by the structure in the undeformed configuration. It has a 

boundary   composed of two parts:  on which the tractions 

0Ω

0Ω∂ t
0Ω∂ 0t  are given 

and  on which the displacements are specified (assumed zero here). Thus, the 

boundary conditions associated to Eq. (2.2) are 

u
0Ω∂

 00
ikjkij tnSF =   for tX 0Ω∂∈  (2.4) 

 u = 0  for uX 0Ω∂∈  (2.5) 

Note in Eqs (2.2) and (2.4) that the vectors 0b  and 0t  correspond to the transport 

(“pull back”) of the body forces and tractions applied on the deformed 

configuration, i.e. b and t, back to the reference configuration (see [15, 16]). 
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To complete the formulation of the elastodynamic problem, it remains to 

specify the constitutive behavior of the material. In this regard, it will be assumed 

here that the second Piola-Kirchhoff stress tensors S is linearly related to the 

Green strain tensor E defined as 

( )ijkjkiij FFE δ−=
2
1   

(2.6) 

That is, 

 klijklij ECS =   (2.7) 

where  denotes the fourth order elasticity tensor. ijklC

Introducing the assumed displacement field of Eq. (2.1) in Eqs (2.2)-(2.7) 

and proceeding with a Galerkin approach leads, after some manipulations, to the 

desired governing equations, i.e. 

 
ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1(&&&  (2.8)

in which  are mass components, , , and  are the linear, 

quadratic, and cubic stiffness coefficients, and  are the modal forces. Note that 

the damping term  has been added in Eq. (2.8) to collectively represent 

various dissipation mechanisms. Further, the symmetrical role of j and l in the 

quadratic terms and j, l, and p in the cubic ones indicates that the summations 

over those indices can be restricted to p ≥ l ≥ j. 

ijM )1(
ijK )2(

ijlK )3(
ijlpK

iF

jij qD &
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Once the generalized coordinates ( )tq j  have been determined from Eq. 

(2.8), the stress field can also be evaluated from Eqs. (2.3), (2.6), and (2.7). 

Specifically, it is found that every component of the second Piola-Kirchhoff stress 

tensor can be expressed as 

∑∑ ++=
nm

nm
nm

ij
m

m
m

ijijij qqSqSSS
,

),()( ~ˆ   
(2.9) 

where the coefficients ijS , , and  depend only on the point X)(ˆ m
ijS ),(~ nm

ijS  

considered. 
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Chapter 3 

INDENTIFICATION OF THE REDUCED ORDER MODEL PARAMETERS 

One of the key component of the present as well as related nonlinear 

reduced order modeling approaches (see introduction) is the identification of the 

parameters of Eqs (8) and (9) from a finite element model of the structure 

considered in a standard (e.g. Nastran, Abaqus, Ansys) software. The reliance on 

such commercial codes gives access to a broad database of elements, boundary 

conditions, numerical algorithms, etc. but is a challenge from the standpoint of the 

determination of the parameters of Eqs (2.8) and (2.9) as one has only limited 

access to the detailed element information and matrices. 

In a finite element format, the displacement field of components ( )tXui ,  

is replaced by its discretized counterpart, the vector ( )tu , represented as 

 
( ) ( )∑

=
ψ=

M

n

n
n tqtu

1

)(  (3.1) 

where )(nψ  are the discretized basis functions. The estimation of the mass 

components ijM  and modal forces iF  is achieved as in linear modal models, i.e. 

 )()( j
FE

Ti
ij MM ψψ=  (3.2) 

 ( )tFF Ti
i

)(ψ=  (3.3) 

where FEM  is the finite element mass matrix and F(t) is the excitation vector on 

the structure.  
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Next is the determination of the stiffness coefficients , , 

and . In this regard, note first that the linear coefficients  could be 

determined as in linear modal models, i.e. 

)1(
ijK )2(

ijlK

)3(
ijlpK )1(

ijK

 )()1()()1( j
FE

Ti
ij KK ψψ=  (3.4) 

where  is the finite element linear stiffness matrix. Another approach must 

be adopted however for  and  as nonlinear stiffness matrices are 

typically not available. Two approaches have been proposed to identify these 

parameters (and potentially the linear ones as well) from a series of static finite 

element solutions. The first one relies on prescribing a series of load cases and 

projecting the induced responses on the basis functions 

)1(
FEK

)2(
ijlK )3(

ijlpK

)(nψ  to obtain the 

corresponding generalized coordinates values , p being the index of the load 

cases. Then, introducing these values into Eq. (2.8) for each load case yields 

)( p
jq

 )()()()()3()()()2()()1( p
i

p
r

p
l

p
jijlr

p
l

p
jijl

p
jij FqqqKqqKqK =++  

i = 1, ..., M  
(3.5) 

Proceeding similarly for P load cases yields a set of linear algebraic 

equations for the coefficients  and , and possibly the linear stiffness 

coefficients  as well, which can be solved in a least squares format to 

complete the identification of the stiffness parameters. 

)2(
ijlK )3(

ijlpK

)1(
ijK
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An alternate strategy has also been proposed (e.g. see [14]) in which the 

displacements are prescribed and the required force distributions are obtained 

from the finite element code. The corresponding modal forces are then evaluated 

from Eq. (3.3) and a set of equations of the form of Eq. (3.5) is again obtained. 

Appropriately selecting the displacement fields to be imposed can lead to a 

particularly convenient identification of the stiffness coefficients. Specifically, the 

imposition of displacements proportional to the basis function )(nψ  only, i.e. 

 )(n
nqu ψ=                 

)(ˆˆ n
nqu ψ=  

)(~~ n
nqu ψ=  

(3.6) 

leads to the 3 sets of equations 

 
ininnnninnnin FqKqKqK =++ 3)3(2)2()1(  

ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1( =++  

ininnnninnnin FqKqKqK ~~~~ 3)3(2)2()1( =++  

(no sum on n) 

(3.7) 

for i = 1, ..., M. In fact, these 3 sets of equations permit the direct evaluation of the 

coefficients , , and  for all i. Repeating this effort for n = 1, ..., M 

thus yields a first set of stiffness coefficients. 

)1(
inK )2(

innK )3(
innnK

Proceeding similarly but with combinations of two basis functions, i.e. 
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 )()( m
m

n
n qqu ψ+ψ=     m ≥ n (3.8) 

and relying on the availability of the coefficients , ,  and , 

,  determined above, leads to equations involving the three 

coefficients , , and . Thus, imposing three sets of 

displacements of the form of Eq. (3.8) provides the equations needed to also 

identify , , and . 

)1(
inK )2(

innK )3(
innnK )1(

imK

)2(
immK )3(

immmK

)2(
inmK )3(

innmK )3(
inmmK

)2(
inmK )3(

innmK )3(
inmmK

Finally, imposing displacement fields linear combination of three modes, 

i.e. 

 )()()( r
r

m
m

n
n qqqu ψ+ψ+ψ=     r ≥ m ≥ n (3.9) 

permits the identification of the last coefficients, i.e. . )3(
inmrK

The above approach, referred to as the STEP (STiffness Evaluation 

Procedure), has often been used and has generally led to the reliable identification 

of the reduced order model parameters, especially in connection with flat 

structures, with values of the generalized coordinates  of the order of, or 

smaller than, the thickness. However, in some curved structures, e.g. the curved 

beam of [11], several of the models identified by the STEP process were found to 

be unstable, i.e. a finite valued static solution could not be obtained with a time 

marching algorithm, when the applied load magnitude exceeded a certain 

threshold. This problem occurred most notably for loads inducing a snap-through 

of the curved beam. 

sq

  10 



In studying this problem, it was observed that the magnitude of some of 

the terms , , and/or  computed at a large amplitude 

(of the order of 10 thicknesses say) snap-through solution were much larger (2 

orders of magnitude was routinely observed) than the driving . Accordingly, 

the balance of the terms on the left-hand-side of Eq. (2.8) must be accomplished 

quite accurately or, equivalently, a very good accuracy is required on the stiffness 

coefficients, to have a good match of the full finite element solution in such cases. 

A sensitivity analysis of the stiffness coefficients identified by the above approach 

in the curved beam case (see description below) suggested that the accuracy 

requirements were right at the limit of what could be expected and thus another 

identification procedure was sought. 

jij qK )1(
ljijl qqK )2(

rljijlr qqqK )3(

)( p
iF

The perceived weakness of the procedure based on Eqs (3.6)-(3.9) is that 

the identification is conducted near the undeformed configuration for which the 

linear terms are much larger than the quadratic ones, themselves much larger than 

the cubic terms. That is, in conditions in which the critical balance of the terms on 

the left-hand-side does not take place. In this light, it was proposed to shift the 

baseline point around which the identification is achieved from the undeformed 

state to one in or near the expected difficult conditions, e.g. in a snap-through 

configuration for the curved beam. This baseline solution admits the 

representation 

 
∑
=

ψ=
M

n

n
nqu

1

)(
0,0  (3.10)
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Then, the test displacement fields imposed for identification are 

 )(
0

n
nquu ψ+=  (3.11)

 )()(
0

m
m

n
n qquu ψ+ψ+=     m ≥ n (3.12)

 )()()(
0

r
r

m
m

n
n qqquu ψ+ψ+ψ+=     r ≥ m ≥ n  (3.13)

More specifically, for each value of n = 1, ..., M, three cases of the form of 

Eq. (3.11) were considered with = +q, -q, and q/2 as before with q typically 

smaller than the thickness. The four cases corresponding to positive and negative 

values of  and  in Eq. (3.12) were also included for each n and m ≥ n. 

Finally, all eight cases associated with positive and negative values of , , 

and 

nq

nq mq

nq mq

rq  for r ≥ m ≥ n  and all n were used. 

The displacement fields of Eqs (3.11)-(3.13) include generalized 

coordinates along all basis functions and thus no simplification of Eq. (3.5) takes 

place as in Eq. (3.7). Accordingly, the stiffness coefficients were obtained by a 

least squares solution of Eq. (3.5) with the complete set of displacement fields 

imposed by Eq. (3.11)-(3.13). Note that the linear, quadratic, and cubic stiffness 

coefficients are often of very different magnitudes and thus an appropriate scaling 

of the terms is recommended to keep low the condition number of the least 

squares matrix. It was also found beneficial to include the equations 

corresponding to two different baseline displacement fields 0u . 
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Chapter 4 

BASIS SELECTION 

4.1 Introduction 
 

The two previous chapters have focused on the derivation of the 

parametric form of the reduced order model governing equations, Eqs (2.8) and 

(3.5), and on the estimation of the parameters from a set of well chosen finite 

element solutions. The last key aspect of the construction of reduced order models 

is the selection of the basis functions )(nψ . In this regard, the expected features of 

the reduced order model are that (i) it leads to an accurate representation of the 

full finite element results and (ii) it includes a “reasonably” small number of basis 

functions. 

The selection of such a basis is not as straightforward a task as in linear 

systems. Consider for example a flat homogenous structure subjected to 

transverse loads. In the linear response range, only transverse deflections result 

from the loading. However, these deflections induce a stretching in the in-plane 

direction and thus give rise to in-plane motions as well which are a second order 

effect and thus not captured by linear analyses. Nevertheless, such motions must 

be captured when constructing the nonlinear reduced order model. 

  13 

As another example of complexity introduced by nonlinear effects, note 

the existence of “symmetry breaking bifurcations”. The response of the 

symmetric curved beam shown in Fig. 4.1 to a uniform dynamic loading is known 

(see [4]) to be symmetric, as in the linear case, for small loading levels. However, 

when the response becomes large enough, antisymmetry arises through a 



nonlinear coupling of antisymmetric and symmetric modes. In such cases, it is 

thus necessary to also include antisymmetric modes in the basis to accurately 

capture the beam response. 

In light of the above observations, this chapter is focused on the 

clarification of the steps followed for the selection of the basis used in connection 

with the curved beam of Fig. 4.1. 

t = 0.09 in
w = 1.0 in
t = 0.09 in
w = 1.0 in

 

Figure 4.1. Curved beam geometry. 

4.2 Representation Error 

Since the selection of the basis is not a straightforward task, it is necessary 

to quantify the appropriateness of a particular choice of modes for the 

representation of the response. It is proposed here to introduce the representation 

error 

 

 
(4.1) 

where u is a particular response of the finite element model (referred to as a test 

case) and  is its projection on the basis selected, 

i.e.  
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∑
=

ψ=
M

n

n
projnproj qu

1

)(
,  (4.2) 

where 

 uMq FE
Tn

projn
)(

, ψ=  (4.3) 

assuming that the basis functions )(nψ  are orthonormalized with respect to the 

finite element mass matrix FEM . 

A basis will be considered to be acceptable for the modeling of the 

structural response when the representation error for a series of test cases, 

including both static and dynamic ones, is below a certain threshold. Visual 

correlations of the responses u and their projections suggest that this threshold 

should be taken of the order of 0.01. 

Note that even a zero representation error does not guarantee that the 

reduced order model constructed with the basis will lead to a good match of the 

ROM and finite element predicted displacement fields as the generalized 

coordinates  will not be obtained from Eq. (4.3) but rather through the 

governing equations, Eqs (2.8) and (3.5). So, the representation error should be 

considered as only an indicator, not an absolute measure of the appropriateness of 

the basis. Further, the worth of the representation error is dependent on the test 

cases selected which must span the space of loading and responses of interest. For 

example, including only symmetric basis functions and considering test cases in 

which this symmetry also holds may suggest that the basis is appropriate while in 

fact it may not if symmetry breaking does take place for some loadings of interest. 

( )tqn
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4.3 Dual Modes 

The discussion of section 4.1 highlights that the basis appropriate for a 

nonlinear geometric ROM must include other modes than those considered for a 

linear modal model but provides no guidance on how to select them. This issue 

has been investigated recently, see [8], and it has been suggested that the “linear 

basis”, i.e. the modes necessary in linear cases, be complemented by “dual 

modes” which capture the nonlinear interactions in the structure. 

While the construction of the dual modes is applicable to any structural 

modeling, it is most easily described in the context of an isotropic flat structure, 

e.g. beam or plate, subjected to a transverse loading. Selecting an appropriate 

basis for the transverse displacements follows the same steps as in a linear 

analysis in which no further modeling is necessary. When the response level is 

large enough for nonlinear geometric effects to be significant, small in-plane 

displacements appear in the full solution which are associated with the 

“membrane stretching” effect. While small, these in-plane motions induce a 

significant softening of the stiffening nonlinearity associated with pure transverse 

motions. 

One approach to construct a full basis, i.e. modeling both transverse and 

in-plane displacements, appropriate for the modeling of the nonlinear response is 

to focus specifically on capturing the membrane stretching effects. The key idea 

in this approach is thus to subject the structure to a series of “representative” static 

loadings, determine the corresponding nonlinear displacement fields, and extract 



from them additional basis functions, referred to as the “dual modes” that will be 

appended to the linear basis, i.e. the modes that would be used in the linear case. 

In this regard, note that the membrane stretching effect is induced by the 

nonlinear interaction of the transverse and in-plane displacements, not by an 

external loading. Thus, the dual modes can be viewed as associated (the adjective 

“companion” would have been a better description than “dual”) with the 

transverse displacements described by the linear basis. The representative static 

loadings should then be selected to excite primarily the linear basis functions and, 

in fact, in the absence of geometric nonlinearity (i.e. for a linear analysis) should 

only excite these “modes”. This situation occurs when the applied load vectors on 

the structural finite element model are of the form 

∑ ψα=
i

i
FE

m
i

m KF )()1()()(   (4.4) 

where  are coefficients to be chosen with m denoting the load case number. 

A detailed discussion of the linear combinations to be used is presented in [8] but, 

in all validations carried out, it has been sufficient to consider the cases 

)(m
iα

 )()1()()( i
FE

m
i

m
i KF ψα=    i = dominant mode (4.5) 

 [ ])()1()()1(
)(

)(
2

j
FE

i
FE

m
im

ij KKF ψψ
α

=                    

i = dominant mode, ij ≠  

(4.6) 

where a “dominant” mode is loosely defined as one providing a large component 

of the response. The ensemble of loading cases considered is formed by selecting 
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several values of  for each dominant mode in Eq. (4.2) and also for each 

mode 

)(m
iα

ij ≠  in Eq. (4.3). Note further that both positive and negative values of 

 are suggested and that their magnitudes should be such that the 

corresponding displacement fields 

)(m
iα

)(m
iu  and )(m

iju  range from near linear cases to 

some exhibiting a strong nonlinearity. 

The next step of the basis construction is the extraction of the nonlinear 

effects in the obtained displacement fields which is achieved by removing from 

the displacements fields their projections on the linear basis, i.e. by forming the 

vectors 

 [ ] s
s

m
iFE

T
s

m
i

m
i uMuv ψψ−= ∑ )()()(  (4.7) 

 [ ] s
s

m
ijFE

T
s

m
ij

m
ij uMuv ψψ−= ∑ )()()(  (4.8) 

assuming that the finite element mass matrix serves for the orthonormalization of 

the basis functions )(nψ  (including the linear basis functions and any dual mode 

already selected). 

A proper orthogonal decomposition (POD) of each set of “nonlinear 

responses” )(m
iv  and )(m

ijv  is then sequentially carried out to extract the dominant 

features of these responses which are then selected as dual modes. The POD 

eigenvectors rφ  selected as dual modes should not only be associated with a large 

eigenvalue but should also induce a large strain energy, as measured by 
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rFE
T
r K φφ )1( , since the membrane stretching that the dual modes are expected to 

model is a stiff deformation mode. 

To exemplify the above process, a flat aluminum beam (see [17] for 

details), cantilevered on both ends was considered and the duals corresponding to 

the first four symmetric transverse modes are shown in Fig. 4.2. Note that these 

duals are all antisymmetric as expected from the symmetry of the transverse 

motions assumed. To obtain a better sense of the appropriateness of these 

functions, a POD analysis of an ensemble of nonlinear responses was carried out 

and also shown on Fig. 4.2 are the mass normalized POD eigenvectors found for 

the in-plane displacements. In fact, two such analyses were conducted, one using 

a series of static responses and the other using snapshots obtained during a 

dynamic run. It is seen from these results that the dual modes proposed in [8] are 

in fact very close to the POD eigenvectors obtained from both static and dynamic 

snapshots. Note that both POD eigenvectors and dual modes are dependent on the 

responses, e.g. their magnitude, from which they are derived. The results of Fig. 

4.2 were obtained with responses ranging typically from 0.08 to 0.8 beam 

thickness. In fact, in this range of displacements, the POD analysis of the static 

responses yielded only two eigenvectors with significant eigenvalue and thus no 

POD-static curve is present in Figs 4.2(c) and 4.2(d). 

 

 

 

 
  19 



 

0 0.05 0.1 0.15 0.2 0.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 X
 D

is
pl

ac
em

en
t

 

 

POD-Static-1
POD-Dynamic-1
Dual-Mode1

 

(a) 

 

0 0.05 0.1 0.15 0.2 0.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 X
 D

is
pl

ac
em

en
t

 

 

POD-Static-2
POD-Dynamic-2
Dual-Mode2

 

(b) 

 

  20 
 



 

0 0.05 0.1 0.15 0.2 0.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 X
 D

is
pl

ac
em

en
t

 

 
POD-Dynamic-3
Dual-Mode3

 

(c) 

0 0.05 0.1 0.15 0.2 0.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 X
 D

is
pl

ac
em

en
t

 

 

POD-Dynamic-4
Dual-Mode4

 

(d) 

Figure 4.2. Comparison of dual modes and POD eigenvectors of static and 

dynamic responses, clamped-clamped flat beam.  
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4.4 Curved Beam - Observations 

 The first step in the selection of the basis for the curved beam of Fig. 4.1 

was the determination of its linear mode shapes and of a series of static and 

dynamic nonlinear test cases to be used in the evaluation of the representation 

error, Eq. (4.1). Shown in Fig. 4.3 are the first 6 modes with dominant 

components in the plane of the beam. Modes 5 and 6 were found to be out-of-

plane modes and thus were not included in the reduced order model as no such 

motion was observed in the validation cases considered. Displayed in Fig. 4.3 are 

modal displacements along the locally normal and tangential directions, not along 

the global X and Y coordinates. 

Shown similarly in Fig. 4.4 are static responses of the curved beam 

induced by a uniform pressure P acting along the negative Y axis, see Fig. 4.1. For 

ease of presentation, the responses were scaled by their respective peak values 

which are given in Table 4.1. Note that the cases P = 1 and 1.5 lb/in lead to 

nonlinear deflections but no snap-through while the load of P = 2 lbs/in does 

induce such an event. Further, the normal components are all symmetric while the 

tangential ones are antisymmetric, consistent with the symmetry of the beam and 

its excitation. 

Table 4.1. Maximum absolute normal and tangential displacements of some 

uniform negative pressure loads on the curved beam (in thickness) 

 P=1 P=1.5 P=2 

Max Normal Disp. 0.158 0.262 9.7 



Max Tangential Disp. 0.0028 0.0046 0.2551 

 

 

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 N
or

m
al

 D
is

pl
ac

em
en

t

 

 
Mode1
Mode2
Mode3

 

(a) 

 

0 2 4 6 8 10 12 14 16 18
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Position along beam (in)

N
or

m
al

iz
ed

 T
an

ge
nt

ia
l D

is
pl

ac
em

en
t

 

 
Mode1
Mode2
Mode3

 

  23 
(b) 



 

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Position along beam (in)

N
or

m
al

iz
ed

 N
or

m
al

 D
is

pl
ac

em
en

t

 

 

Mode4
Mode7
Mode8

(c) 

0 2 4 6 8 10 12 14 16 18
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Position along beam (in)

N
or

m
al

iz
ed

 T
an

ge
nt

ia
l D

is
pl

ac
em

en
t

 

 
Mode4
Mode7
Mode8

(d) 

Figure 4.3. Linear mode shapes 1, 2, 3, 4, 7, and 8 of the curved beam. 

(a) Modes 1, 2 and 3 – Normalized normal displacement. 

(b) Modes 1, 2 and 3 – Tangential displacement. 

(c) Modes 4, 7, and 8 – Normalized normal displacement. 
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(d) Modes 4, 7, and 8 – Tangential displacement. 
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Figure 4.4. Normalized static responses of the curved beam to uniform loads P. 
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(a) Normalized normal displacement. 
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(b) Normalized tangential displacement.  

Snap-shots of the dynamic response of the beam are shown in Figs 4.5 and 

4.6. On the former figure, the responses are strongly symmetric in the normal 

direction and antisymmetric in the tangential, although not exactly as in the static 

cases, see Fig. 4.4. However, in the latter figure 4.6, no symmetry of the 

responses is observed, either exactly or even approximately. These observations 

confirm the observations of [4,11] that a symmetry breaking bifurcation takes 

place dynamically and thus the lack of symmetry will need to be reflected in the 

basis. 
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Figure 4.5. Snap-shots of the dynamic response of the curved beam - I. 



(a) Normalized normal displacement. 

(b) Normalized tangential displacement. 
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Figure 4.6. Snap-shots of the dynamic response of the curved beam - II. 
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(a) Normalized normal displacement. 

(b) Normalized tangential displacement. 

4.5 Curved Beam - Normal Basis Functions 

 Consistently with linear modal models, the appropriateness of the linear 

mode shapes to represent the nonlinear responses was first investigated. From Fig. 

4.3, it is seen that all mode shapes exhibit at least one zero of the normal 

displacements which thus alternate (except mode 3) between positive and 

negative values. However, all static responses and most large dynamic ones do 

not, their normal displacements are all one sided and no zero at the middle (as the 

linear mode 3). To get an overall perspective on that issue, the ensembles of static 

and dynamic responses were analyzed separately in a POD format to extract the 

dominant features of the beam response. The corresponding POD eigenvectors of 

the normal components (treated separately of the tangential ones), shown in Fig 

4.7, do indeed confirm the above impression: the first normal POD eigenvector of 

both static and dynamic responses does indeed exhibit a one-sided normal 

displacement reaching its maximum value at the middle, at the contrary of the 

linear mode shapes. However, the second normal POD eigenvector is somewhat 

similar to the second (lowest symmetric) mode shape. While the mode shapes are 

known to form a complete basis for all deflections, linear or nonlinear, of the 

curved beam, the above observations suggest that the convergence with the 

number of modes used may be slow. 

 On this basis, it was decided here not to use the linear mode shapes but 

rather a set of basis functions that is consistent with the POD eigenvectors of Fig. 



4.7. Certainly, the POD eigenvectors themselves could have been selected but it 

was desired to select basis functions originating from a natural family of modes. 

In this regard, a strong similarity was observed between the normal POD 

eigenvectors and the mode shapes of a flat beam spanning the same distance, see 

Figs 4.7. Accordingly, it was decided to use these mode shapes as basis functions 

for the normal direction. Note that the value of the modal displacement of the flat 

beam in the transverse direction was directly used for the curved beam basis 

functions as a normal component with zero tangential counterpart. 
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(d) 

Figure 4.7. Comparison of the POD eigenvectors of static and dynamic responses 

in normal direction of the curved beam and the corresponding flat beam 

transverse modes. 

4.6 Curved Beam - Tangential Basis Functions 

 The basis functions introduced in the previous sections do not have any 

tangential component and thus cannot provide a complete representation of the 

beam response. This situation closely parallels the flat beam where the modes first 

selected were purely transverse. For that structure, the “dual modes” of section 

4.3 were successfully used to complement the transverse modes suggesting a 

similar choice for the curved beam using the normal basis functions as linear 

basis. In fact, the dual modes and POD eigenvectors were found to be very similar 

for the flat beam, see Fig. 4.2 and it was desired to first assess whether a similar 

property would hold for the curved beam. 
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  Since the normal basis functions do not have any tangential component, it 

was decided that the dual modes that would be used should exhibit purely 

tangential displacements and the procedure of section 4.3 was modified 

accordingly by zeroing the normal components of the “nonlinear responses” )(m
iv  

and )(m
ijv  before performing the POD analysis. The resulting dual modes 

corresponding to the symmetric normal basis functions are compared in Fig. 4.8 

to the POD eigenvectors obtained from the ensemble of static and dynamic 

tangential responses. A good qualitative agreement is observed although the 

quantitative match is not as close as seen for the flat beam, see Fig. 4.2. On the 

basis of this successful comparison, the dual modes were selected to complement 

the normal basis functions for the representation of the curved beam response. 
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(c) 
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(d) 

Figure 4.8. Comparison of the POD eigenvectors of static and dynamic responses 

in tangential direction and the dual modes, curved beam. 
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Chapter 5 

CURVED BEAM STATIC RESPONSE VALIDATION  

This chapter presents static response validation for the identification 

strategy based on Eqs (3.10)-(3.13) using the clamped-clamped curved beam of [4, 

5, 11], see Fig. 4.1. The beam has an elastic modulus of 10.6×106 psi, shear 

modulus of 4.0×106 psi, and density of 2.588×10-4 lbf-sec2/in4. A Nastran finite 

element model with 144 CBEAM elements was developed to first construct the 

reduced order model and then assess its predictive capabilities. The reduced order 

model development aimed at the dynamic response to a pressure uniform in space 

but varying in time. This chapter focuses solely on the static response to such a 

loading, i.e. F(t) = P constant, and shown in Fig. 5.1 is the vertical displacement 

induced at the middle of the beam as a function of P. Note that the beam exhibits 

a snap-through at P = 1.89 lb/in and that the magnitude of the snap-through 

deformation is quite large, of the order of 10 thicknesses. If the beam is unloaded 

from this point, it will not go back to the neighborhood of the undeformed 

position, i.e. on the left branch, until the loads reduces to approximately 0.45 lb/in, 

which represents the snap-back condition. 
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Figure 5.1. Relation between applied static pressure and vertical displacement of 

the beam middle, curved beam, predicted by Nastran and ROM. 

 

The basis used for the reduced order model included the first 6 normal 

basis functions and the corresponding 6 dual modes next step of the reduced order 

model construction focused on the modeling of the locally tangent displacements 

which was achieved using the dual modes of chapter 4 with the first basis function 

(first mode of the flat beam) dominant. Since the first 6 basis functions included 

only normal components, the 6 dual modes were made purely tangential by 

stripping their normal components. This process led for the present static 

computations to a 12 mode model similar to the one considered in [11], see [17] 

for additional models and results. To get an idea of how well this 12-modes basis 
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could capture the uniform pressure static responses, representation error was 

computed at some load cases, see Table 5.1. Since the errors are reasonably small, 

this basis was considered to be acceptable. 

Table 5.1. Representation error in percentage of the basis at some negative 

uniform pressure static loadings.   

 P=1 lb/in P=1.7 lb/in P=2 lb/in P=3 lb/in 

Normal 1.095e-002 1.159e-002 1.478e-002 1.848e-002 

Tangential 2.152e-002 1.637e-002 2.418e-002 4.749e-002 

 

The construction of the reduced order model according to the STEP 

procedure of Eqs (3.6)-(3.9) led to the same difficulties as those encountered in 

[11] and described in chapter 3, i.e. difficulty in obtaining a static solution by a 

time marching integration of the reduced order equations of Eq. (2.8). Even when 

a solution could be found, it led to a poor matching of the finite element results. 

This issue was resolved in [11] by a detailed study of coefficients and a zeroing 

out of those that drove the instability; a model matching well the full finite 

element results was then obtained. 

The present effort relied instead on the revised identification procedure, i.e. 

Eqs (3.10)-(3.13). Specifically, two baseline solutions were considered that 

correspond to the projection of the full finite element results at P = 1.7lb/in on the 

left branch, i.e. below the snap-through limit, and at P = 2lb/in, i.e. above the 

snap-through transition. No instability of the model was found in any of the 

computations carried out thereby suggesting that this phenomenon was indeed 
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related to the near cancelation of terms and demonstrating the benefit of the 

revised identification of Eqs (3.10)-(3.13). 

The assessment of the reduced model in matching the full finite element 

results was carried out in two phases corresponding to the two branches, left and 

right, of the response curve of Fig. 5.2. Shown in Fig. 5.3 are the normal and 

tangential displacements obtained at the load of P = 1.7lb/in which are typical of 

the left branch. An excellent match between Nastran and reduced order model 

results is obtained. A similar analysis was conducted with loading conditions on 

the right branch and shown in Fig. 5.4 are the normal and tangential 

displacements obtained for P = 3 lb/in. Both Nastran and reduced order models 

were then unloaded to P = 1 lb/in, see Fig. 5.5. Finally, a load of P = 10 lb/in was 

also considered and the responses are shown in Fig. 5.6. In all of these cases, an 

excellent match is obtained between the full finite element model results and the 

reduced order model predictions. Additional comparisons, in particular with other 

good reduced order models, are presented in [17]. Clearly, the identification 

algorithm based on Eqs (3.10)-(3.13) has led to very reliable reduced order 

models. 
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(b) 

Figure 5.2. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 1.7 lb/in.  

(a) Normal and (b) tangential displacements. 
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(b) 

Figure 5.3. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 3 lb/in.  

(a) Normal and (b) tangential displacements. 
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(b) 

Figure 5.4. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 1 lb/in (right branch).                          

 (a) Normal and (b) tangential displacements. 
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(b) 

Figure 5.5. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 10 lb/in.  

(a) Normal and (b) tangential displacements. 
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CURVED BEAM DYNAMIC RESPONSE VALIDATION  

This chapter proceeds to present dynamic response validation for the 

identification strategy based on Eqs (3.10)-(3.13) using the same beam and 

Nastran finite element model of previous chapter. In order to capture the anti-

symmetric motion of the snap-through behavior of the curved beam in dynamic 

response, the inclusions of anti-symmetric modes are thus necessary.  

With the same strategy as chapter 5, three anti-symmetric and four 

symmetric linear modes of the corresponding straight beam were considered and 

assumed to define the displacement in the locally normal direction to the beam. 

Same antisymmetric dual modes of chapter 5 were included here, and, by using 

Eq. (4.4) with each anti-symmetric linear mode and Eq. (4.5) with each anti-

symmetric linear mode and first symmetric mode, five “symmetric” dual modes 

were created and added to the bases. These dual modes were also made purely 

tangential by stripping their normal components. These processes led to a totally 

18 modes model. To make sure this 18-modes basis could capture the complexity 

of the dynamic response, representation error was computed on a series of snap-

shots from the dynamic response. Note that here the snapshots were made with 

purely-symmetric normal components or with purely-antisymmetric tangential 

components or with purely-antisymmetric normal components or with purely 

symmetric tangential components for the purpose of judging the 4 symmetric 

modes; 6 antisymmetric duals; 3 antisymmetric modes; and 5 symmetric duals of 

the 18-modes basis separately.       
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Table 6.1. Representation error in percentage of the basis on the snapshots with 

symmetric normal components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Normal 2.46E-01 1.13E-02 4.69E-02 1.69E-01 

 

Table 6.2. Representation error in percentage of the basis on the snapshots with 

antisymmetric tangential components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Tangential 2.49E-02 1.68E-02 1.38E-02 1.73E-01 

 

Table 6.3. Representation error in percentage of the basis on the snapshots with 

antisymmetric normal components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Normal 1.82E-01 1.31E-01 1.37E-01 2.23E-01 

 

Table 6.4. Representation error in percentage of the basis on the snapshots with 

symmetric tangential components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Tangential 1.63E-01 1.48E-01 3.39E-02 2.97E-01 

 

As for the identification of the ROM parameters, two baseline solutions 

were considered that correspond to the projection of the full finite element results 

at P=0.98-1.82 lb/in, P=1.4-2.6 lb/in. The baseline solution P=1.4-2.6 lb/in has a 
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mean value of 2 lb/in and it is actually very close to symmetric. However, the 

baseline solution P=0.98-1.82 lb/in does not snap and it contains lots of 

antisymmetric motion, which allows the model capturing well the anti-motion of 

the curved beam.   

The validation was achieved by considering a white noise random loading 

exhibiting a flat spectrum in the range of [0, 4000Hz]. Three excitations levels 

were considered yielding RMS forces of 0.5, 1, and 2 lb/in, see [11]. The higher 

levels 1 and 2 lb/in displayed intermittent and nearly continuous snap-through 

excursions. The power spectrum of the responses for both X and Y displacements 

of quarter and center points at each load level comparing to Nastran results are 

presented. Note the good agreement between the reduced order modeling 

displacement predictions with the Nastran full finite element results. 
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(b) 

Figure 6.1. Curved beam quarter-point power spectrum density for random 

loading = 0.5 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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(b) 

Figure 6.2. Curved beam quarter-point power spectrum density for random 

loading = 1 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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(b) 

Figure 6.3. Curved beam quarter-point power spectrum density for random 

loading = 2 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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(b) 

Figure 6.4. Curved beam center-point power spectrum density for random loading 

= 0.5 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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(b) 

Figure 6.5. Curved beam center-point power spectrum density for random loading 

= 1 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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(b) 

Figure 6.6. Curved beam center-point power spectrum density for random loading 

= 2 lb/in, [0, 4000Hz]. (a) X and (b) Y displacements. 
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Chapter 7 

SUMMARY 

The present investigation focused on a revisit and extension of existing 

approaches for the reduced order modeling of the geometrically nonlinear 

response of a curved beam. Difficulties, i.e. instability of the reduced order model, 

encountered in the past were first analyzed. This effort then served as the basis for 

the formulation of a revised identification procedure of the parameters of the 

reduced order model, see Eqs (3.10)-(3.13). The application of this procedure to 

the previous curved beam model removed the instability issue and led to an 

excellent matching of reduced order model and finite element predictions for a 

broad range of external loading. The present results extend previous validation 

studies in demonstrating the worth of reduced order modeling of nonlinear 

geometric structures. 
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